scholarly journals Detection of a biolistic delivery of fluorescent markers and CRISPR/Cas9 to the pollen tube

Author(s):  
Shiori Nagahara ◽  
Tetsuya Higashiyama ◽  
Yoko Mizuta

Abstract Key message Biolistic delivery into pollen. Abstract In recent years, genome editing techniques, such as the CRISPR/Cas9 system, have been highlighted as a new approach to plant breeding. Agrobacterium-mediated transformation has been widely utilized to generate transgenic plants by introducing plasmid DNA containing CRISPR/Cas9 into plant cells. However, this method has general limitations, such as the limited host range of Agrobacterium and difficulties in tissue culture, including callus induction and regeneration. To avoid these issues, we developed a method to genetically modify germ cells without the need for Agrobacterium-mediated transfection and tissue culture using tobacco as a model. In this study, plasmid DNA containing sequences of Cas9, guide RNA, and fluorescent reporter was introduced into pollen using a biolistic delivery system. Based on the transient expression of fluorescent reporters, the Arabidopsis UBQ10 promoter was found to be the most suitable promoter for driving the expression of the delivered gene in pollen tubes. We also evaluated the delivery efficiency in male germ cells in the pollen by expression of the introduced fluorescent marker. Mutations were detected in the target gene in the genomic DNA extracted from CRISPR/Cas9-introduced pollen tubes, but were not detected in the negative control. Bombarded pollen germinated pollen tubes and delivered their contents into the ovules in vivo. Although it is necessary to improve biolistic delivery efficiency and establish a method for the screening of genome-modified seeds, our findings provide important insights for the detection and production of genome-modified seeds by pollen biolistic delivery.

2021 ◽  
Author(s):  
Shiori Nagahara ◽  
Tetsuya Higashiyama ◽  
Yoko Mizuta

AbstractIn recent years, genome-editing techniques, such as the CRISPR/Cas9 system, have been highlighted as a new approach to plant breeding.Agrobacterium-mediated transformation has been widely utilized to generate transgenic plants by introducing plasmid DNA containing CRISPR/Cas9 into plant cells. However, this method is generally applicable to a limited range of plants, such as model species. To overcome this limitation, we developed a method to genetically modify male germ cells without the need forAgrobacterium-mediated transfection and tissue culture, by using tobacco as a model. In this study, plasmid DNA containing sequences of Cas9, guide RNA, and fluorescent reporter was introduced into pollen using a biolistic delivery system. Based on the transient expression of fluorescent reporters, theArabidopsis UBQ10promoter was found to be the most suitable for driving expression of the delivered gene in pollen tubes. We also evaluated delivery efficiency in male germ cells in the pollen by expression of the introduced fluorescent marker. Mutations were detected in the target gene in the genomic DNA extracted from CRISPR/Cas9 introduced pollen tubes but were not detected in the negative control. Bombarded pollen germinated pollen tubes on the stigma and produced two sperm cells within the pistil. We also observed ovules showing fluorescence derived from bombarded pollen. The findings of this study provide important insights into the editing of pollen tube genomes and the delivery of genome-modified male germ cells for seed production.


2016 ◽  
Vol 8 (45) ◽  
pp. 30735-30746 ◽  
Author(s):  
Yunfei Li ◽  
Brock Humphries ◽  
Zhishan Wang ◽  
Shuyao Lang ◽  
Xuefei Huang ◽  
...  

2016 ◽  
Vol 28 (12) ◽  
pp. 1916 ◽  
Author(s):  
Yusheng Qin ◽  
Ling Liu ◽  
Yanan He ◽  
Wenzhi Ma ◽  
Huabin Zhu ◽  
...  

Intraperitoneal busulfan injections are used to prepare recipients for spermatogonial stem cell (SSC) transplantation but they are associated with haematopoietic toxicity. Testicular injections of busulfan have been proposed to overcome this limitation. To date, testicular injections have not been studied in the mouse model. Therefore, in the present study we used ICR mice as recipients for SSC transplantation and prepared these mice by testicular injection of busulfan on both sides (2, 3, 4 or 6 mg kg–1 per side). Following this, donor germ cells expressing red fluorescent protein (RFP) from transgenic C57BL/6J male mice were transplanted into recipients via the efferent duct on Days 16–17 after busulfan treatment. Positive control mice were prepared by intraperitoneal injection of 40 mg kg–1 busulfan and negative control mice were treated with bilateral testicular injection of 50% dimethyl sulfoxide. On Day 49 after transplantation, recipient mice that were RFP-positive by in vivo imaging were mated with ICR female mice. Donor-derived germ cell colonies with red fluorescence were observed on Day 60 after transplantation, and donor-derived offspring were obtained. The results demonstrated that endogenous germ cells were successfully eliminated in the seminiferous tubules via testicular busulfan administration, and that exogenous SSCs successfully undergo spermatogenesis in the testes of recipient mice prepared by testicular injections of busulfan. In addition to its effects on recipient preparation, this method was safe in rodents and could possibly be adapted for use in other species.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100871
Author(s):  
Dilara Yilmaz ◽  
Yannick Fischer ◽  
Sandra Zimmermann ◽  
Gaonhae Hwang ◽  
Ralph Müller ◽  
...  

2021 ◽  
Vol 7 (8) ◽  
pp. eabd6167
Author(s):  
Capucine L. Grandjean ◽  
Zacarias Garcia ◽  
Fabrice Lemaître ◽  
Béatrice Bréart ◽  
Philippe Bousso

Anti-CD20 antibody (mAb) represents an effective strategy for the treatment of B cell malignancies, possibly involving complement activity, antibody-dependent cellular cytotoxicity and phagocytosis (ADP). While ADP by Kupffer cells deplete circulating tumors, mechanisms targeting non-circulating tumors remain unclear. Using intravital imaging in a model of B cell lymphoma, we establish here the dominance and limitations of ADP in the bone marrow (BM). We found that tumor cells were stably residing in the BM with little evidence for recirculation. To elucidate the mechanism of depletion, we designed a dual fluorescent reporter to visualize phagocytosis and apoptosis. ADP by BM-associated macrophages was the primary mode of tumor elimination but was no longer active after one hour, resulting in partial depletion. Moreover, macrophages were present at low density in tumor-rich regions, targeting only neighboring tumors. Overcoming spatiotemporal bottlenecks in tumor-targeting Ab therapy thus represents a critical path towards the design of optimized therapies.


Author(s):  
Lisa Agnello ◽  
Silvia Tortorella ◽  
Annachiara d’Argenio ◽  
Clarissa Carbone ◽  
Simona Camorani ◽  
...  

Abstract Background Management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and limited targeted treatment options. Cisplatin represents a promising chemotherapeutic compound in neoadjuvant approaches and in the metastatic setting, but its use is limited by scarce bioavailability, severe systemic side effects and drug resistance. Novel site-directed aptamer-based nanotherapeutics have the potential to overcome obstacles of chemotherapy. In this study we investigated the tumor targeting and the anti-tumorigenic effectiveness of novel cisplatin-loaded and aptamer-decorated nanosystems in TNBC. Methods Nanotechnological procedures were applied to entrap cisplatin at high efficacy into polymeric nanoparticles (PNPs) that were conjugated on their surface with the epidermal growth factor receptor (EGFR) selective and cell-internalizing CL4 aptamer to improve targeted therapy. Internalization into TNBC MDA-MB-231 and BT-549 cells of aptamer-decorated PNPs, loaded with BODIPY505-515, was monitored by confocal microscopy using EGFR-depleted cells as negative control. Tumor targeting and biodistribution was evaluated by fluorescence reflectance imaging upon intravenously injection of Cyanine7-labeled nanovectors in nude mice bearing subcutaneous MDA-MB-231 tumors. Cytotoxicity of cisplatin-loaded PNPs toward TNBC cells was evaluated by MTT assay and the antitumor effect was assessed by tumor growth experiments in vivo and ex vivo analyses. Results We demonstrate specific, high and rapid uptake into EGFR-positive TNBC cells of CL4-conjugated fluorescent PNPs which, when loaded with cisplatin, resulted considerably more cytotoxic than the free drug and nanovectors either unconjugated or conjugated with a scrambled aptamer. Importantly, animal studies showed that the CL4-equipped PNPs achieve significantly higher tumor targeting efficiency and enhanced therapeutic effects, without any signs of systemic toxicity, compared with free cisplatin and untargeted PNPs. Conclusions Our study proposes novel and safe drug-loaded targeted nanosystems for EGFR-positive TNBC with excellent potential for the application in cancer diagnosis and therapy.


2021 ◽  
Vol 22 (16) ◽  
pp. 8367
Author(s):  
Hien Lau ◽  
Shiri Li ◽  
Nicole Corrales ◽  
Samuel Rodriguez ◽  
Mohammadreza Mohammadi ◽  
...  

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8–15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 861
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document