A machine learning-based approach for the segmentation and classification of malignant cells in breast cytology images using gray level co-occurrence matrix (GLCM) and support vector machine (SVM)

Author(s):  
Sana Ullah Khan ◽  
Naveed Islam ◽  
Zahoor Jan ◽  
Khalid Haseeb ◽  
Syed Inayat Ali Shah ◽  
...  
2018 ◽  
Vol 1 (2) ◽  
pp. 46
Author(s):  
Tri Septianto ◽  
Endang Setyati ◽  
Joan Santoso

A higher level of image processing usually contains some kind of classification or recognition. Digit classification is an important subfield in handwritten recognition. Handwritten digits are characterized by large variations so template matching, in general, is inefficient and low in accuracy. In this paper, we propose the classification of the digit of the year of a relic inscription in the Kingdom of Majapahit using Support Vector Machine (SVM). This method is able to cope with very large feature dimensions and without reducing existing features extraction. While the method used for feature extraction using the Gray-Level Co-Occurrence Matrix (GLCM), special for texture analysis. This experiment is divided into 10 classification class, namely: class 1, 2, 3, 4, 5, 6, 7, 8, 9, and class 0. Each class is tested with 10 data so that the whole data testing are 100 data number year. The use of GLCM and SVM methods have obtained an average of classification results about 77 %.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


2012 ◽  
Vol 468-471 ◽  
pp. 2916-2919
Author(s):  
Fan Yang ◽  
Yu Chuan Wu

This paper describes how to use a posture sensor to validate human daily activity and by machine learning algorithm - Support Vector Machine (SVM) an outstanding model is built. The optimal parameter σ and c of RBF kernel SVM were obtained by searching automatically. Those kinematic data was carried out through three major steps: wavelet transformation, Principle Component Analysis (PCA) -based dimensionality reduction and k-fold cross-validation, followed by implementing a best classifier to distinguish 6 difference actions. As an activity classifier, the SVM (Support Vector Machine) algorithm is used, and we have achieved over 94.5% of mean accuracy in detecting differential actions. It shows that the verification approach based on the recognition of human activity detection is valuable and will be further explored in the near future.


2021 ◽  
Author(s):  
Leonie Lampe ◽  
Sebastian Niehaus ◽  
Hans-Jürgen Huppertz ◽  
Alberto Merola ◽  
Janis Reinelt ◽  
...  

Abstract Importance The entry of artificial intelligence into medicine is pending. Several methods have been used for predictions of structured neuroimaging data, yet nobody compared them in this context.Objective Multi-class prediction is key for building computational aid systems for differential diagnosis. We compared support vector machine, random forest, gradient boosting, and deep feed-forward neural networks for the classification of different neurodegenerative syndromes based on structural magnetic resonance imaging.Design, Setting, and Participants Atlas-based volumetry was performed on multi-centric T1weighted MRI data from 940 subjects, i.e. 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to a multi-diagnostic multi-class classification task with eleven different classes.Interventions n.a.Main Outcomes and Measures Cohen’s Kappa, Accuracy, and F1-score to assess model performance.Results Over all, the neural network produced both the best performance measures as well as the most robust results. The smaller classes however were better classified by either the ensemble learning methods or the support vector machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally specific and pronounced atrophy patterns were generally better classified than diseases with wide-spread and rather weak atrophy.Conclusions and Relevance Our study furthermore underlines the necessity of larger data sets but also calls for a careful consideration of different machine learning methods that can handle the type of data and the classification task best.Trial Registration n.a.


Author(s):  
Yassine Ben Salem ◽  
Mohamed Naceur Abdelkrim

In this paper, a novel algorithm for automatic fabric defect classification was proposed, based on the combination of a texture analysis method and a support vector machine SVM. Three texture methods were used and compared, GLCM, LBP, and LPQ. They were combined with SVM’s classifier. The system has been tested using TILDA database. A comparative study of the performance and the running time of the three methods was carried out. The obtained results are interesting and show that LBP is the best method for recognition and classification and it proves that the SVM is a suitable classifier for such problems. We demonstrate that some defects are easier to classify than others.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


2020 ◽  
Vol 1 (1) ◽  
pp. 21-32
Author(s):  
Risha Ambar Wati ◽  
Hafiz Irsyad ◽  
Muhammad Ezar Al Rivan

Pneumonia is a type of lung disease caused by bacteria, viruses, fungi, or parasites. One way to find out pneumonia is by x-ray. X-rays will be analyzed to determine whether there is pneumonia or not. This study aims to classify the x-ray results whether there is pneumonia or not on the x-ray results. The classification method used in this study were Support Vector Machine (SVM) and Gray Level Co-Occurrence (GLCM) for the extraction method. There are several stages before classification, namely cropping, resizing, contrast stretching, and thresholding then extracted using GLCM and classified using SVM. The results showed that the best accuracy of 62.66%.


Sign in / Sign up

Export Citation Format

Share Document