scholarly journals Lipopolysaccharide induces visceral hypersensitivity: role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor in rats

2016 ◽  
Vol 52 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Tsukasa Nozu ◽  
Saori Miyagishi ◽  
Rintaro Nozu ◽  
Kaoru Takakusaki ◽  
Toshikatsu Okumura
1993 ◽  
Vol 265 (4) ◽  
pp. R834-R839 ◽  
Author(s):  
T. Nakamori ◽  
A. Morimoto ◽  
N. Murakami

We investigated the role of central corticotropin-releasing factor (CRF) in the development of cardiovascular and thermal responses induced by stress or by interleukin-1 beta (IL-1 beta) in free-moving rats. Intracerebroventricular (icv) injection of alpha-helical CRF9-41 (10 micrograms), a CRF receptor antagonist, significantly attenuated hypertension, tachycardia, and a rise in body temperature induced by cage-switch stress, a mild stress. However, icv injection of alpha-helical CRF9-41 (10 micrograms) had no effect on hypertension, tachycardia, or fever induced by intraperitoneal (ip) injection of IL-1 beta (2 micrograms/kg) or icv prostaglandin E2 (PGE2, 100 ng). In contrast, icv injection of alpha-helical CRF9-41 (10 micrograms) significantly attenuated hypertension, tachycardia, or fever induced by icv injection of IL-1 beta (20 ng). The present results suggest that central CRF has an important role in the development of the cage-switch stress-induced responses, but it does not seem to contribute to the hypertension, tachycardia, and fever induced by ip IL-1 beta or by central PGE2. However, it is possible that when IL-1 beta directly acts on the central nervous system, some of its actions are mediated by central CRF.


1995 ◽  
Vol 310 (1) ◽  
pp. 143-148 ◽  
Author(s):  
D Zhang ◽  
S L Jiang ◽  
D Rzewnicki ◽  
D Samols ◽  
I Kushner

The combination of interleukin 6 (IL-6) and interleukin 1 (IL-1) synergistically induces the human acute-phase reactant, C-reactive protein (CRP) in Hep3B cells. While previous studies have indicated that IL-6 induces transcription of CRP, the mode of action of IL-1 has not been clearly defined. It has been suggested that the effect of IL-1 might be post-transcriptional, exerted through the 5′-untranslated region (5′-UTR). To evaluate the role of IL-1 in CRP gene expression, we studied the effects of interleukin-6 (IL-6) and interleukin-1 beta (IL-1 beta) on both the endogenous CRP gene and on transfected CRP-CAT constructs in Hep3B cells. In kinetic studies of the endogenous CRP gene, IL-1 beta alone had no effect on CRP mRNA levels, but when added to IL-6, synergistically enhanced both CRP mRNA levels and transcription, as determined by Northern-blot analyses and nuclear run-on studies. IL-6 alone and the combination of [IL-1 beta + IL-6] each induced increases in mRNA levels roughly comparable with observed increases in transcription. These findings indicate that the effect of IL-1 beta on CRP expression is exerted largely at the transcriptional level in this system. This conclusion was confirmed by studies in Hep3B cells transiently transfected with CRP-CAT constructs, each containing 157 bp of the CRP 5′-flanking region but differing in the length of the 5′-UTR from 104 bp to 3 bp. All constructs responded in the same way; IL-6, but not IL-1 beta, induced significant chloramphenicol acetyltransferase (CAT) expression which was synergistically enhanced 2- to 3-fold by IL-1 beta. These results indicate that IL-1 beta stimulates transcriptional events in the presence of IL-6 and that the upstream 157 bases of the CRP promoter contain elements capable of both IL-6 induction and the synergistic effect of IL-1 beta on transcription.


2017 ◽  
Vol 7 (2) ◽  
pp. e1388485 ◽  
Author(s):  
Imran Siddiqui ◽  
Marco Erreni ◽  
Mohammad Azhar Kamal ◽  
Chiara Porta ◽  
Federica Marchesi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document