Responses of soil microbial catabolic diversity to arbuscular mycorrhizal inoculation and soil disinfection

Mycorrhiza ◽  
2007 ◽  
Vol 17 (6) ◽  
pp. 537-545 ◽  
Author(s):  
A. P. Dabire ◽  
V. Hien ◽  
M. Kisa ◽  
A. Bilgo ◽  
K. S. Sangare ◽  
...  
2006 ◽  
Vol 34 (2-3) ◽  
pp. 190-199 ◽  
Author(s):  
Lahcen Ouahmane ◽  
Mohamed Hafidi ◽  
Christian Plenchette ◽  
Marija Kisa ◽  
Ali Boumezzough ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2716
Author(s):  
Karima Bencherif ◽  
Frédéric Laruelle ◽  
Yolande Dalpé ◽  
Anissa Lounès-Hadj Sahraoui

(1) Background: Soil degradation is an increasingly important problem in many parts of the world, particularly in arid and semiarid areas. Arbuscular mycorrhizal fungi (AMF) isolated from arid soils are recognized to be better adapted to these edaphoclimatic conditions than exogenous ones. Nevertheless, little is known about the importance of AMF inoculum sources on Tamarix articulata development in natural saline soils. Therefore, the current study aims at investigating the efficiency of two AMF-mixed inoculums on T. articulata growth, with consideration of its rhizosphere microbiota. (2) Methods: indigenous inoculum made of strains originating from saline soils and a commercial one were used to inoculate T. articulata in four saline soils with different salinity levels under microcosm conditions with evaluation of rhizosphere microbial biomasses. (3) Results: Our findings showed that indigenous inoculum outperforms the commercial one by 80% for the mycorrhizal rate and 40% for plant biomasses, which are correlated with increasing shoot phosphorus content. Soil microbial biomasses increased significantly with indigenous mycorrhizal inoculum in the most saline soil with 46% for AMF, 25% for saprotrophic fungi and 15% for bacterial biomasses. (4) Conclusion: Present results open the way towards the preferential use of mycorrhizal inoculum, based on native AMF, to perform revegetation and to restore the saline soil microbiota.


2021 ◽  
Vol 13 (3) ◽  
pp. 1226
Author(s):  
Ana Cruz-Silva ◽  
Andreia Figueiredo ◽  
Mónica Sebastiana

Grapevine (Vitis vinifera L.), widely used for berry and wine production, is highly susceptible to the pathogenic oomycete Plasmopara viticola, the etiological agent of grapevine downy mildew disease. The method commonly used to prevent and control P. viticola infection relies on multiple applications of chemical fungicides. However, with European Union goals to lower the usage of such chemicals in viticulture there is a need to develop new and more sustainable strategies. The use of beneficial microorganisms with biocontrol capabilities, such as the arbuscular mycorrhizal fungi (AMF), has been pointed out as a viable alternative. With this study, we intended to investigate the effect of AMF colonization on the expression of P. viticola effectors during infection of grapevine. Grapevine plants were inoculated with the AMF Rhizophagus irregularis and, after mycorrhizae development, plants were infected with P. viticola. The expression of P. viticola RxLR effectors was analyzed by real-time PCR (qPCR) during the first hours of interaction. Results show that pre-mycorrhizal inoculation of grapevine alters the expression of several P. viticola effectors; namely, PvRxLR28, which presented decreased expression in mycorrhizal plants at the two time points post-infection tested. These results suggest that the pre-inoculation of grapevine with AMF could interfere with the pathogen’s ability to infect grapevine by modulation of pathogenicity effectors expression, supporting the hypothesis that AMF can be used to increase plant resistance to pathogens and promote more sustainable agriculture practices, particularly in viticulture.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ricardo Alexander Peña Venegas ◽  
Soon-Jae Lee ◽  
Moses Thuita ◽  
Deusdedit Peter Mlay ◽  
Cargele Masso ◽  
...  

A vast majority of terrestrial plants are dependent on arbuscular mycorrhizal fungi (AMF) for their nutrient acquisition. AMF act as an extension of the root system helping phosphate uptake. In agriculture, harnessing the symbiosis can potentially increase plant growth. Application of the AMF Rhizophagus irregularis has been demonstrated to increase the yields of various crops. However, there is a paradigm that AMF colonization of roots, as well as the plant benefits afforded by inoculation with AMF, decreases with increasing phosphorus (P) supply in the soil. The paradigm suggests that when fertilized with sufficient P, inoculation of crops would not be beneficial. However, the majority of experiments demonstrating the paradigm were conducted in sterile conditions without a background AMF or soil microbial community. Interestingly, intraspecific variation in R. irregularis can greatly alter the yield of cassava even at a full application of the recommended P dose. Cassava is a globally important crop, feeding 800 million people worldwide, and a crop that is highly dependent on AMF for P uptake. In this study, field trials were conducted at three locations in Kenya and Tanzania using different AMF and cassava varieties under different P fertilization levels to test if the paradigm occurs in tropical field conditions. We found that AMF colonization and inoculation responsiveness of cassava does not always decrease with an increased P supply as expected by the paradigm. The obtained results demonstrate that maximizing the inoculation responsiveness of cassava is not necessarily only in conditions of low P availability, but that this is dependent on cassava and fungal genotypes. Thus, the modeling of plant symbiosis with AMF under different P levels in nature should be considered with caution.


Sign in / Sign up

Export Citation Format

Share Document