Continuous measurement of stem-diameter growth response of Pinus pinea seedlings mycorrhizal with Rhizopogon roseolus and submitted to two water regimes

Mycorrhiza ◽  
2001 ◽  
Vol 11 (3) ◽  
pp. 129-136 ◽  
Author(s):  
Javier Parladé ◽  
Moshe Cohen ◽  
Jordi Doltra ◽  
Jordi Luque ◽  
Joan Pera
2007 ◽  
Vol 37 (9) ◽  
pp. 1748-1754
Author(s):  
Xiaoping Zhang ◽  
Bo Zeng ◽  
Zhangcheng Zhong

In the Three Gorges reservoir region of China, Ficus microcarpa L. and Ficus virens Ait. var. sublanceolata (Miq.) Corner (Moraceae) are widely used in greening and ecological restoration following construction, including roads, railways, towns, etc. Branch cuttings are used for cultivating saplings of these trees. We conducted a 4 year experiment that included four branch-removal intensities to evaluate the influence of branch removal on stem height and diameter growth of these Ficus spp. It was found that branch removal did not affect the stem height growth of either F. microcarpa or F. virens, but decreased the growth of their stem basal diameters. The reduction in growth of stem basal diameter was intensified with branch removal. As expected, branch removal decreased the tapering of whole tree stems, but this effect was mainly due to the alteration of the shape of the bare stem part, and the shape of the stem part within the intact upper crown was not affected by the treatment. The data clearly showed that stem height growth was less sensitive than stem diameter growth to branch removal, and that the response of stem diameter growth to branch removal differed between bare and intact stem parts.


2021 ◽  
Vol 914 (1) ◽  
pp. 012015
Author(s):  
Mashudi ◽  
D Setiadi ◽  
S Pudjiono ◽  
M Susanto ◽  
L Baskorowati ◽  
...  

Abstract Alstonia angustiloba is a local tree species that have potential for community forest plantation; therefore, it is important to provide improved seeds. This study aimed to determine the diversity of growth, estimate the value of heritability, and the genetic correlation of the 4-years-old A. angustiloba progeny test. Randomized Completely Block Design with two factors (population and family) were used in this study. In this study, families are nested in the population. The population factors consisted of 4 levels, and family factors consisted of 43 families. The analysis of variance showed that height and stem diameter growth were significantly different between populations and families at four years old. The best height and stem diameter growth at the population level was obtained from the Pendopo population, 4.45 m and 7.71 cm, respectively. At the family level, the best height growth was obtained from 9 families (4.46-5.06 m), and the best stem diameter growth was obtained from 11 families (7.48-8.72 cm). The estimated individual heritability value for height was 0.41, and stem diameter was 0.23. Estimated family heritability values were 0.66 for height and 0.50 for stem diameter. The genetic correlation between height and stem diameter was 0.97.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 494 ◽  
Author(s):  
Yanfang Wan ◽  
Pengtao Yu ◽  
Xiaoqing Li ◽  
Yanhui Wang ◽  
Bin Wang ◽  
...  

It is important to develop a better understanding of the climatic and soil factors controlling the stem diameter growth of Qinghai spruce (Picea crassifolia Kom.) forest. The results will provide basic information for the scientific prediction of trends in the future development of forests. To explain the seasonal pattern of stem diameter growth of Qinghai spruce and its response to environmental factors in the Qilian Mountains, northwest China, the stem diameter changes of 10 sample trees with different sizes and soil and meteorological conditions were observed from May to October of 2015 and 2016. Our results showed that the growth initiation of the stem diameter of Qinghai spruce was on approximately 25 May 2015 and 20 June 2016, and stem diameter growth commenced when the average air and soil temperatures were more than 10 °C and 3 °C, respectively. The cessation of growth occurred on approximately 21 August 2015 and 14 September 2016, and it was probably controlled by soil moisture. Stem diameter growth began earlier, ended later, and exhibited a larger growth rate as tree size increased. For the period May–October, the cumulative stem diameter growth of individual trees was 400 and 380 μm in 2015 and 2016, respectively. The cumulative stem diameter growth had a clear seasonal pattern, which could be divided into three growth stages, i.e., the beginning (from day of year (DOY) 120 to the timing of growth initiation with the daily growth rate of less than 2 μm·day−1), rapid growth (from the timing of growth initiation to the timing of growth cessation with the daily growth rate of more than 2 μm·day−1), and ending stages (from the timing of growth cessation to DOY 300 with the daily growth rate of less than 2 μm·day−1). The correlation of daily stem growth and environmental factors varied with growth stages; however, temperature, vapor pressure deficit (VPD), and soil moisture were the key factors controlling daily stem diameter growth. Overall, these results indicated that the seasonal variation in stem growth was regulated by soil and climatic triggers. Consequently, changes in climate seasonality may have considerable effects on the seasonal patterns of both stem growth and tree growth.


2018 ◽  
Vol 44 (2) ◽  
pp. 339-350 ◽  
Author(s):  
Ian J. Wright ◽  
Julia Cooke ◽  
Lucas A. Cernusak ◽  
Lindsay B. Hutley ◽  
Marina C. Scalon ◽  
...  

1994 ◽  
Vol 24 (9) ◽  
pp. 1877-1882 ◽  
Author(s):  
Patrick J. Temple ◽  
Paul R. Miller

Foliar injury symptoms and stem diameter growth were measured on well-watered and drought-stressed ponderosa pine (Pinusponderosa Dougl. ex Laws.) seedlings at the end of each of 3 years of exposure to three levels of ozone: charcoal-filtered air, nonfiltered air, and nonfiltered air plus 1.5 times ambient ozone. Ozone-injury indices were constructed by adding percent chlorotic mottle and percent necrosis for each needle age-class. Percent necrosis was weighted from 1 to 5 times to construct different indices. Seedlings grown in nonfiltered air plus 1.5 times ambient ozone developed severe foliar injury after 2 years of exposure and were the only seedlings with significant reductions in radial growth after three seasons of exposure to a mean seasonal ozone concentration of 88 ppb. Foliage that had developed >30% chlorotic mottle by September of the 2nd year had abscised by September of the following year. Reduction in radial growth was significantly correlated with amount of foliar injury in well-watered trees, and the best-fit regression equation occurred when percent necrosis was weighted by a factor of 4. Regressions between foliar-injury indices and radial growth in drought-stressed trees were not significant, nor were regressions between radial growth and foliar injury among well-watered trees with only 1 year of premature needle abscission. The low R2 (0.30) between foliar injury and radial growth in well-watered trees and the lack of a significant regression in drought-stressed trees suggest that detection of reductions in stem diameter growth of ponderosa pine in the field in response to ozone injury could be difficult, except for severely injured trees with fewer than 2 years of foliar retention.


2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Frisilia Sopacua ◽  
NURHENI WIJAYANTO ◽  
DESTA WIRNAS

Abstract. Sopacua F, Wijayanto N, Wirnas D. 2021. Growth of three types of sengon (Paraserianthes spp.) in varying planting spaces in agroforestry system. Biodiversitas 22: 4423-4430. Sengon (Paraserianthes spp.) is a fast-growing tree species that is commonly cultivated in the agroforestry system by communities in Indonesia, mainly on Java Island. Among several types of sengon, Solomon sengon is currently gaining popularity due to the fast growth in height and stem diameter. Nonetheless, the spacing layout of selected sengon types is unclear, including Solomon sengon, which yields more optimal growth. This study aimed to examine the growth of three sengon types (i.e., Solomon F2, Solomon F1, and local Kendal) in three spacing patterns, namely 1.5x1.5m, 3x1.5m, and 3x3m. This research was conducted from October 2019 to January 2020 (three months) in the Cikabayan Forest, Bogor Agricultural University, Bogor, West Java. The parameters of sengon growth observed were plant height, height growth rate, stem diameter, stem diameter growth rate, tree volume, and canopy area. Data analysis was performed using ANOVA and continued with Duncan's. The results showed that all types of sengon had optimal growth in the agroforestry system at various spacings. The growth of Solomon F2 adapted well to denser spacings (1.5x1.5m and 1.5x3m) with the highest averages in plant height, stem diameter, volume, and canopy area of ??10.50 m, 8.65 cm, 0.36 m3, and 5.39 m2. Local Kendal had optimal growth at a wider spacing (3x3m) with the highest average stem diameter, volume, and canopy area of ??8.96 cm, 0.043 m3, and 1063 m2. While Solomon F1 adapted well to the three spacings with the highest average in plant height, the growth rate of plant height, stem diameter, volume, and canopy area of ??10.05 m, 1.54 m, 8.59 cm, 0.042 m2, and 2075.30 m2. In general, it can be concluded that the Solomon F1 sengon can adapt well to narrow distances or wide distances. While Solomon F2 is more recommended to be planted at a narrower distance and Kendal local sengon is more recommended to be planted at a wider distance to get optimal growth.


2005 ◽  
Vol 35 (5) ◽  
pp. 1023-1030 ◽  
Author(s):  
Jeffrey D May ◽  
Sarah Beth Burdette ◽  
Frank S Gilliam ◽  
Mary Beth Adams

We studied the effects of excessive nitrogen (N) fertilization on foliar nutrient dynamics and stem growth in three important tree species in a mixed-deciduous forest. Stem diameter growth, foliar N concentrations, nitrogen–phosphorus (N/P) ratios, and nutrient resorption were determined for Acer rubrum L. (ACRU), Liriodendron tulipi fera L. (LITU), and Prunus serotina Ehrh. (PRSE) on two 30-year-old watersheds at the Fernow Experimental Forest, West Virginia, USA: WS3, fertilized annually with 35 kg ammonium sulfate·ha–1 since 1989, and WS7, an untreated control watershed. In an earlier (1992) study, foliar N concentrations of all three species averaged 11% higher in WS3 than in WS7. By 2000, that was no longer the case for any species; indeed N in ACRU leaves was 13% lower in WS3 that year. N/P ratios were elevated in WS3 only in PRSE in 1992 and in both ACRU and PRSE in 1997, but by 2001, mean N/P for all three species was lower in WS3. N resorption efficiencies were 30% lower in WS3 in ACRU and PRSE, but not in LITU. Stem diameter growth in WS3 was 55% lower in ACRU and 30% lower in LITU and PRSE compared with that in WS7. Results may indicate declining growth vigor in ACRU and, to a lesser extent, PRSE and LITU in the fertilized watershed. Observed interspecific differences in growth and plant nutrition responses suggest eventual changes in species composition under increasing N saturation.


Sign in / Sign up

Export Citation Format

Share Document