First considerations on the structure and development of the Iberian thermal low-pressure system

1994 ◽  
Vol 12 (5) ◽  
pp. 457-468 ◽  
Author(s):  
S. Alonso ◽  
A. Portela ◽  
C. Ramis

Abstract. During the summer a thermal low-pressure system is locked over the Iberian Peninsula. We present a first analysis of such a system using the potential vorticity approach. Our results show that its main characteristic is the existence of a negative potential vorticity (PV) dome and a funnel-like structure for potential temperature, both located at the centre of the low. The build-up and evolution of this PV dome can be understood in terms of the dot products of the absolute vorticity and the gradient of diabetic heating vectors and the curl of the friction forces and the gradient of potential temperature vectors. The inhibition of the Algerian Mediterranean cyclogenesis during the summer seems to bear some relation to the existence of this kind of low-pressure disturbance over the Iberian Peninsula.

2020 ◽  
Vol 33 (6) ◽  
pp. 2051-2074 ◽  
Author(s):  
Spencer K. Clark ◽  
Yi Ming ◽  
Ángel F. Adames

AbstractIn this paper, it is shown that westward-propagating monsoon low pressure system–like disturbances in the South Asian monsoon region can be simulated in an idealized moist general circulation model through the addition of a simplified parameterization of land. Land is parameterized as having one-tenth the heat capacity of the surrounding slab ocean, with evaporation limited by a bucket hydrology model. In this model, the prominent topography of the Tibetan Plateau does not appear to be necessary for these storm systems to form or propagate; therefore, focus is placed on the simulation with land but no topography. The properties of the simulated storms are elucidated using regression analysis and compared to results from composites of storms from comprehensive GCMs in prior literature and reanalysis. The storms share a similar vertical profile in anomalous Ertel potential vorticity to those in reanalysis. Propagation, however, does not seem to be strongly dictated by beta drift. Rather, it seems to be more closely consistent with linear moisture vortex instability theory, with the exception of the importance of the vertical advection term in the Ertel potential vorticity budget toward the growth and maintenance of disturbances. The results presented here suggest that a simplified GCM configuration might be able to be used to gain a clearer understanding of the sensitivity of monsoon low pressure systems to changes in the mean state climate.


2021 ◽  
Author(s):  
Philipp Zschenderlein ◽  
Heini Wernli

<p>In January 2021, large parts of Spain were affected by an unusually long cold spell and exceptional snowfall associated with the winter storm Filomena. According to the Spanish weather service AEMET, snow heights of nearly 50 cm were registered in and around Madrid. During the days after Filomena, record-breaking low temperatures were measured at many stations.</p><p>Already during the days before the arrival of storm Filomena, anomalously cold temperatures at 850 hPa and night frosts at the surface prevailed over large parts of Spain. During these days in early January, the air flow towards Spain was predominantly northeasterly and advected cold air masses from Central Europe, as revealed by backward trajectories that were initialised near the surface over Spain. The land surface progressively cooled down during the days prior to the heavy snowfall, which then prevented the snow from melting when reaching the surface. Therefore, this cold spell preconditioning seems to be very important for the extreme consequences of the snowfall event.</p><p>The storm Filomena affected Spain between 8 and 10 January. It developed from a precursor low-pressure system between the Azores and Madeira. The precursor low-pressure system itself developed on 2 January 2021 between the northeastern US and Nova Scotia, rapidly intensified along a potential vorticity (PV) streamer and propagated southeastwards. Between 4 and 6 January, the cyclone, now located near the Azores, was associated with a PV cut-off and eventually decayed into multiple centres. Out of this decaying low-pressure system, Filomena developed and reached Spain on 8 January.</p><p>The most intense snowfall occurred on 9 January and affected large parts of Spain, except for southwestern Spain, where temperatures were too high and all precipitation fell as rain. Filomena was associated with an intense air mass boundary, with dry and cold air in the north and warm and humid air in the south. Equivalent potential temperature differences at 850 hPa across Spain exceeded 20 K. Along the warm frontal part of this air mass boundary, strong ascending airstreams, intensified by the dynamics of Filomena, led to cloud formation. Due to the unusually cold lowermost troposphere, snow was not melting before reaching the land surface, and the surface snow layer could therefore easily grow.</p><p>Overall, the combination of the already cold temperatures near the surface, the optimal position of the air mass boundary, and the dynamical forcing for ascent at this intense baroclinic zone associated with Filomena were essential ingredients for this extreme snow fall event to occur.</p>


2021 ◽  
Author(s):  
Oliver Sjögren ◽  
Carlos Xisto ◽  
Tomas Grönstedt

Abstract The aim of this study is to explore the possibility of matching a cycle performance model to public data on a state-of-the-art commercial aircraft engine (GEnx-1B). The study is focused on obtaining valuable information on figure of merits for the technology level of the low-pressure system and associated uncertainties. It is therefore directed more specifically towards the fan and low-pressure turbine efficiencies, the Mach number at the fan-face, the distribution of power between the core and the bypass stream as well as the fan pressure ratio. Available cycle performance data have been extracted from the engine emission databank provided by the International Civil Aviation Organization (ICAO), type certificate datasheets from the European Union Aviation Safety Agency (EASA) and the Federal Aviation Administration (FAA), as well as publicly available data from engine manufacturer. Uncertainties in the available source data are estimated and randomly sampled to generate inputs for a model matching procedure. The results show that fuel performance can be estimated with some degree of confidence. However, the study also indicates that a high degree of uncertainty is expected in the prediction of key low-pressure system performance metrics, when relying solely on publicly available data. This outcome highlights the importance of statistic-based methods as a support tool for the inverse design procedures. It also provides a better understanding on the limitations of conventional thermodynamic matching procedures, and the need to complement with methods that take into account conceptual design, cost and fuel burn.


2017 ◽  
Vol 74 (3) ◽  
pp. 801-807 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka ◽  
Thomas Spengler

Abstract Inversion of potential vorticity density with absolute vorticity and function η is explored in η coordinates. This density is shown to be the component of absolute vorticity associated with the vertical vector of the covariant basis of η coordinates. This implies that inversion of in η coordinates is a two-dimensional problem in hydrostatic flow. Examples of inversions are presented for (θ is potential temperature) and (p is pressure) with satisfactory results for domains covering the North Pole. The role of the boundary conditions is investigated and piecewise inversions are performed as well. The results shed new light on the interpretation of potential vorticity inversions.


1978 ◽  
Vol 73 (2) ◽  
pp. 220-229 ◽  
Author(s):  
K. Kirsch ◽  
A. Ameln ◽  
H. J. Wicke

2016 ◽  
Author(s):  
Hyun Cheol Kim ◽  
Soontae Kim ◽  
Seok-Woo Son ◽  
Pius Lee ◽  
Chun-Sil Jin ◽  
...  

Abstract. We demonstrate that daily pollutant transport patterns in East Asia are visible from satellite images when inspected with corresponding synoptic weather analyses. Transport pathways of air pollutants in East Asia are investigated using satellite observations, surface weather charts, and chemical-transport model simulations. It is found that during cool season (fall to spring), pollutant transports in East Asia are largely determined by synoptic weather patterns associated with high pressure system over southern China, which is extended from the Siberia High, and low pressure system over Manchuria, which is initiated by Altai-Sayan cyclogenesis. Based on the relative location and strength of these weather systems, three types of synoptic weather patterns that may contribute to pollutants transport in East Asia, especially in China and Korea, are identified: i.e., (1) a strengthening of the Siberian High and its southeastward propagation; (2) a high-pressure system over southern China followed by a frontal passage associated with a northern low-pressure system; and (3) a stagnant high-pressure system over southern China. For all three patterns, the high-pressure system in southern China is essential for the development of regional air pollution, while frontal activities associated with low-pressure system provide a forcing mechanism to transport those pollutants eastward or southeastward. Observed and simulated surface PM distributions show good agreement in both aerosol optical depth and NO2 column density further implying that anthropogenic emissions also contribute to regional events of high surface PM concentrations. It is argued that the quasi-periodic migration of synoptic weather systems in East Asia works as an efficient pump of pollutants; i.e., regional air pollutions developed under high-pressure systems are transported downstream by low-pressure systems.


Sign in / Sign up

Export Citation Format

Share Document