scholarly journals Initial backscatter occurrence statistics from the CUTLASS HF radars

1997 ◽  
Vol 15 (6) ◽  
pp. 703-718 ◽  
Author(s):  
S. E. Milan ◽  
T. K. Yeoman ◽  
M. Lester ◽  
E. C. Thomas ◽  
T. B. Jones

Abstract. A statistical study of the occurrence of ground and ionospheric backscatter within the fields-of-view of the CUTLASS HF radars, at an operating frequency of 10 MHz, during the first 20 months of operation has been undertaken. The diurnal variation of the occurrence of backscatter and the range at which such backscatter is observed is found to be highly dependent on seasonal changes of the ionospheric electron density in both the E and F region, determined from ionosonde observations. In general, ionospheric backscatter is observed at far ranges during the local day in winter months and at near ranges during the local night in summer months. The Iceland radar observes more near-range E region backscatter than the Finland radar as a consequence of its more zonal look-direction. The dependence of the occurrence of backscatter on geomagnetic activity and radar operating frequency are also investigated. The occurrence of ground and ionospheric backscatter is discussed in terms of HF propagation modes and ionospheric electron densities as well as geophysical processes. A brief assessment of the possible impact of solar cycle variations on the observations is made and frequency management is discussed. Such a study, with its focus on the `instrumental' aspect of backscatter occurrence, is essential for a full interpretation of HF coherent radar observations.

2002 ◽  
Vol 20 (10) ◽  
pp. 1647-1661 ◽  
Author(s):  
A. V. Koustov ◽  
D. W. Danskin ◽  
M. V. Uspensky ◽  
T. Ogawa ◽  
P. Janhunen ◽  
...  

Abstract. Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at ~144 MHz and ~12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5, providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider an event when STARE radar echoes are detected at the same ranges as CUT-LASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and electron density behaviour at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS-CAT measurements), while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUT-LASS velocities agree well with the convection component along the CUTLASS radar beam, while STARE velocities are typically smaller by a factor of 2–3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on the range. Plasma physics of E-and F-region irregularities is discussed in attempt to explain the inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; auroral ionosphere)


2002 ◽  
Vol 20 (11) ◽  
pp. 1769-1781 ◽  
Author(s):  
J.-P. Villain ◽  
R. André ◽  
M. Pinnock ◽  
R. A. Greenwald ◽  
C. Hanuise

Abstract. The HF radars of the Super Dual Auroral Radar Network (SuperDARN) provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities)


2002 ◽  
Vol 20 (12) ◽  
pp. 1977-1985 ◽  
Author(s):  
R. Sridharan ◽  
C. V. Devasia ◽  
N. Jyoti ◽  
Diwakar Tiwari ◽  
K. S. Viswanathan ◽  
...  

Abstract. The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N), India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i) the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii) significant increase in h' F immediately following the eclipse and (iii) distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F) rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities)


The present paper continues the account of wireless investigations of the ionized regions of the upper atmosphere given in two previous papers. The results discussed in it consist chiefly of measurements of the equivalent heights of the ionized regions made simultaneously at two or three receiving stations with wave-lengths of the order of 100 metres. The frequency-change method of measuring the equivalent height was used throughout. 2. Extension of Equivalent Height Measurements to the Use of Short Waves . The experiments described previously were continued with shorter wave-lengths with two objects in view. In the first place it had been found that 400-metre waves penetrated the lower ionized region (E region) only on certain nights, and then only during the few hours before dawn. This result clearly showed that penetration of this region was most likely when the density of ionization was least. But, according to most theories of wireless propagation, a greater electronic density is required to reflect or refract short waves than is the case with long waves, so that it was anticipated that by reducing the wave-length below 400 metres it might be possible to penetrate E region over a longer period of time during the night than had been possible when 400-metre waves had been used. In this way it was hoped to make a more detailed study of the variation of the equivalent height of the upper region (F region) which had been found to reflect 400-metre waves on the occasion when they had penetrated the normal E region. Secondly, since it is known that the attenuation of the ground waves increases rapidly as the wave-length is reduced below, say, 400 metres, it was expected that, with the use of shorter waves, the ratio of the values of downcoming wave intensity and ground wave intensity would be much increased at all stations. Such an increase, it was expected, would make it possible to continue the measurements of equivalent heights, in general, a good deal further into the daylight hours. Such daylight measurements on longer waves had previously been found difficult, because of the relative weakness of the intensity of the downcoming waves as compared with that of the ground waves.


1998 ◽  
Vol 16 (1) ◽  
pp. 55-68 ◽  
Author(s):  
S. E. Milan ◽  
M. Lester

Abstract. A common feature of evening near-range ionospheric backscatter in the CUTLASS Iceland radar field of view is two parallel, approximately L-shell-aligned regions of westward flow which are attributed to irregularities in the auroral eastward electrojet region of the ionosphere. These backscatter channels are separated by approximately 100–200 km in range. The orientation of the CUTLASS Iceland radar beams and the zonally aligned nature of the flow allows an approximate determination of flow angle to be made without the necessity of bistatic measurements. The two flow channels have different azimuthal variations in flow velocity and spectral width. The nearer of the two regions has two distinct spectral signatures. The eastern beams detect spectra with velocities which saturate at or near the ion-acoustic speed, and have low spectral widths (less than 100 m s–1), while the western beams detect lower velocities and higher spectral widths (above 200 m s–1). The more distant of the two channels has only one spectral signature with velocities above the ion-acoustic speed and high spectral widths. The spectral characteristics of the backscatter are consistent with E-region scatter in the nearer channel and upper-E-region or F-region scatter in the further channel. Temporal variations in the characteristics of both channels support current theories of E-region turbulent heating and previous observations of velocity-dependent backscatter cross-section. In future, observations of this nature will provide a powerful tool for the investigation of simultaneous E- and F-region irregularity generation under similar (nearly co-located or magnetically conjugate) electric field conditions.Key words. Auroral ionosphere · Ionospheric irregularities · Plasma convection


2021 ◽  
Author(s):  
Mani Sivakandan ◽  
Jorge L Chau ◽  
Carlos Martinis ◽  
Yuichi Otsuka ◽  
Jens Mielich ◽  
...  

<p>Northwest to southeast phase fronts with southwestward moving features are commonly observed in the nighttime midlatitude ionosphere during the solstice months at low solar activity. These features are identified as nighttime MSTIDs (medium scale traveling ionospheric disturbances). Initially, they were considered to be a manifestation of neutral atmospheric gravity waves. Later on, investigations showed that the nighttime MSTIDs are electrified in nature and mostly confined to the mid and low latitude ionosphere. Although the overall characteristics of the nighttime MSTIDs are mostly well understood, the causative mechanisms are not well known. Perkins instability mechanism was believed to be the cause of nighttime MSTIDs, however, the growth rate of the instability is too small to explain the perturbations observed. Recently, model simulations and observational studies suggest that coupling between sporadic-E layers and other type of E-region instabilities, and the F region may be relevant to explain the generation of the MSTIDs.</p><p>In the present study simultaneous observation from OI 630 nm all-sky airglow imager, GPS-TEC, ionosonde and Meteor radars, are used to investigate the role of E and F region coupling on the generation of MSTIDs .Nighttime MSTIDs observed on three nights (14 March 2020, 23 March 2020 and 28 May 2020) in the OI 630 nm airglow images over Kuehlungsborn (54°07'N; 11°46'E, 53.79N  mag latitude), Germany, are presented. Simultaneous detrended GPS-TEC measurements also shows presence of MSTIDs on these nights. In addition, simultaneous ionosonde observations over Juliusruh (54°37.7'N 13°22.5'E) show spread-F in the ionograms as well as sporadic-E layer occurrence.  Furthermore, we also investigate the MLT region wind variations during these nights. The role of Es-layers and the interplay between the winds and Es-layers role on the generation of the MSTIDs will be discussed in detail in this presentation.</p><p> </p>


2021 ◽  
Author(s):  
Zhe Guo ◽  
Hanxian Fang ◽  
Farideh Honary

Abstract This paper introduces a new approach for the determination of the source region of BW (beat wave) modulation. This type of modulation is achieved by transmitting HF continuous waves with a frequency difference of f, where f is the frequency of modulated ELF/VLF (extremely low frequency/very low frequency) waves from two sub-arrays of a high power HF transmitter. Despite the advantages of BW modulation in terms of generating more stable ELF/VLF signal and high modulation efficiency, there exists a controversy on the physical mechanism of BW and its source region. In this paper, the two controversial theories, i.e. BW based on D-E region thermal nonlinearity and BW based on F region ponderomotive nonlinearity are examined for cases where each of these two theories exists exclusively or both of them exist simultaneously. According to the analysis and the simulation results presented in this paper, it is found that the generated VLF signal amplitude exhibits significant variation as a function of HF frequency in different source regions. Therefore, this characteristic can be utilised as a potential new approach to determine the physical mechanism and source location of BW.


2003 ◽  
Vol 21 (2) ◽  
pp. 577-581 ◽  
Author(s):  
L. A. Hajkowicz ◽  
H. Minakoshi

Abstract. A long-term (over 3 years) study has been undertaken to obtain a comprehensive evaluation of VHF ionospheric scintillation morphology in East Asia (at Kokobunji in Japan), using amplitude records from Transit satellites. It is now evident that summer day and night scintillation enhancement in this mid-latitude region is a long-term evidence of a well-known Asian ionospheric disturbance anomaly. The scintillation activity is particularly strong during summer nights (21:00–24:00 LT) and on occasion, all satellite passes recorded on consecutive days are associated with pronounced scintillation activity. A second sub-maximum is observed in the summer pre-noon period (09:00–12:00 LT). The scintillation regions extend latitudinally for a distance of 400–600 km in the F-region and 100–200 km in the E-region, mostly equatorwards of Kokobunji. For comparison similar scintillation data obtained for one year at the same longitudinal sector but in southern mid-latitudes (Brisbane in Australia) were compared with the simultaneous northern scintillation data. The scintillation activity at Brisbane was much less pronounced in the southern summer but was of the same low level during other seasons as that for Kokobunji. This consistent scintillation anomaly, as yet, has not been included in the global scintillation models, which are essential for radio-satellite communications.Key words. Ionosphere (mid-latitude ionosphere; ionospheric irregularities)


2020 ◽  
Vol 1 ◽  
Author(s):  
Chris Hall ◽  
Magnar Gullikstad Johnsen

AbstractIn a recent study, mid-latitude ionospheric parameters were compared with solar activity; it was suggested that the relationship between these, earlier assumed stable, might be changing with time (Lastovicka, 2019). Here, the information is extended to higher latitude (69.6°N, 19.2E) and further back in time. For the ionospheric F-region (viz. the critical frequency, FoF2) the same behaviour is seen with a change-point around 1996. For the ionospheric E-region (viz. the critical frequency, foE), change-points are less obvious than in the mid-latitude study, presumably owing to the observation site lying under the auroral oval.


Sign in / Sign up

Export Citation Format

Share Document