scholarly journals Extracellular vesicles derived from mesenchymal stem cells induce features of diabetic retinopathy in vitro

2014 ◽  
Vol 51 (6) ◽  
pp. 1055-1064 ◽  
Author(s):  
Elena Beltramo ◽  
Tatiana Lopatina ◽  
Elena Berrone ◽  
Aurora Mazzeo ◽  
Alessandra Iavello ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daphne Hingert ◽  
Karin Ekström ◽  
Jonathan Aldridge ◽  
Rosella Crescitelli ◽  
Helena Brisby

Abstract Background Extracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and have been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences, there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSC-derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model. Methods hMSCs were isolated from bone marrow aspirate, and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the sEVs at 5 × 1010 vesicles/ml concentration for 28 days and compared to control. The pellets were harvested at days 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis, and cytokine secretions. Results The findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEV-treated DC pellets compared to control cultures. Further, sEV treatment suppressed secretion of MMP-1 in the DCs. Conclusion hMSC-derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.


Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 37 ◽  
Author(s):  
Andrew Khayrullin ◽  
Priyanka Krishnan ◽  
Luis Martinez-Nater ◽  
Bharati Mendhe ◽  
Sadanand Fulzele ◽  
...  

Extracellular vesicles (EVs), including exosomes and microvesicles, function in cell-to-cell communication through delivery of proteins, lipids and microRNAs to target cells via endocytosis and membrane fusion. These vesicles are enriched in ceramide, a sphingolipid associated with the promotion of cell senescence and apoptosis. We investigated the ceramide profile of serum exosomes from young (24–40 yrs.) and older (75–90 yrs.) women and young (6–10 yrs.) and older (25–30 yrs.) rhesus macaques to define the role of circulating ceramides in the aging process. EVs were isolated using size-exclusion chromatography. Proteomic analysis was used to validate known exosome markers from Exocarta and nanoparticle tracking analysis used to characterize particle size and concentration. Specific ceramide species were identified with lipidomic analysis. Results show a significant increase in the average amount of C24:1 ceramide in EVs from older women (15.4 pmol/sample) compared to those from younger women (3.8 pmol/sample). Results were similar in non-human primate serum samples with increased amounts of C24:1 ceramide (9.3 pmol/sample) in older monkeys compared to the younger monkeys (1.8 pmol/sample). In vitro studies showed that primary bone-derived mesenchymal stem cells (BMSCs) readily endocytose serum EVs, and serum EVs loaded with C24:1 ceramide can induce BMSC senescence. Elevated ceramide levels have been associated with poor cardiovascular health and memory impairment in older adults. Our data suggest that circulating EVs carrying C24:1 ceramide may contribute directly to cell non-autonomous aging.


2021 ◽  
Author(s):  
Qingjie Wang ◽  
Le Zhang ◽  
Zhiqin Sun ◽  
Boyu Chi ◽  
Ailin Zou ◽  
...  

Abstract Aims Naturally secreted extracellular vesicles (EVs) play important roles in stem-mediated cardioprotection. This study aimed to investigate the cardioprotective function and underlying mechanisms of EVs derived from HIF-1a engineered mesenchymal stem cells (MSCs) in a rat model of AMI.Methods and Results EVs isolated from HIF-1a engineered MSCs (HIF-1a-EVs) and control MSCs (MSCs-EVs) were prepared. In in vitro experiments, the EVs were incubated with cardiomyocytes and endothelial cells exposed to hypoxia and serum deprivation (H/SD); in in vivo experiments, the EVs were injected in the acutely infarcted hearts of Sprague-Dawley rats. Compared with MSCs-EVs, HIF-1a-EVs significantly inhibited the apoptosis of cardiomyocytes and enhanced angiogenesis of endothelial cells; meanwhile, HIF-1a-EVs also significantly shrunk fibrotic area and strengthened cardiac function in infarcted rats. After treatment with EVs/RGD-biotin hydrogels, we observed longer retention, higher stability in HIF-1a-EVs, and stronger cardiac function in the rats. Quantitative real-time PCR (qRT-PCR) displayed that miRNA-221-3p was highly expressed in HIF-1a-EVs. After miR-221-3p was inhibited in HIF-1a-EVs, the biological effects of HIF-1a EVs on apoptosis and angiogenesis were attenuated.Conclusion EVs released by MSCs with HIF-1a overexpression can promote the angiogenesis of endothelial cells and the apoptosis of cardiomyocytes via upregulating the expression of miR-221-3p. RGD hydrogels can enhance the therapeutic efficacy of HIF-1a engineered MSC-derived EVs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Maryam Hosseinzadeh ◽  
Amir Kamali ◽  
Samaneh Hosseini ◽  
Mohamadreza Baghaban Eslaminejad

The inability of cartilage to self-repair necessitates an effective therapeutic approach to restore damaged tissues. Extracellular vesicles (EVs) are attractive options because of their roles in cellular communication and tissue repair where they regulate the cellular processes of proliferation, differentiation, and recruitment. However, it is a challenge to determine the relevant cell sources for isolation of EVs with high chondrogenic potential. The current study aims to evaluate the chondrogenic potential of EVs derived from chondrocytes (Cho-EV) and mesenchymal stem cells (MSC-EV). The EVs were separately isolated from conditioned media of both rabbit bone marrow MSCs and chondrocyte cultures. The isolated vesicles were assessed in terms of size, morphology, and surface marker expression. The chondrogenic potential of MSCs in the presence of different concentrations of EVs (50, 100, and 150 μg/ml) was evaluated during 21 days, and chondrogenic surface marker expressions were checked by qRT-PCR and histologic assays. The extracted vesicles had a spherical morphology and a size of 44.25 ± 8.89  nm for Cho-EVs and 112.1 ± 10.10  nm for MSC-EVs. Both groups expressed the EV-specific surface markers CD9 and CD81. Higher expression of chondrogenic specified markers, especially collagen type II (COL II), and secretion of glycosaminoglycans (GAGs) and proteoglycans were observed in MSCs treated with 50 and 100 μg/ml MSC-EVs compared to the Cho-EVs. The results from the use of EVs, particularly MSC-EVs, with high chondrogenic ability will provide a basis for developing therapeutic agents for cartilage repair.


2020 ◽  
Author(s):  
Daphne Hingert ◽  
Karin Ekström ◽  
Jonathan Aldridge ◽  
Rosella Crescitelli ◽  
Helena Brisby

Abstract Background: Extracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and has been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSCs derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model. Methods: hMSCs were isolated from bone marrow aspirate and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the EVs at 5x1010 vesicles/mL concentration for 28 days and compared to control. The pellets were harvested at day 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis and cytokine secretions.Results: The findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEVs treated DC pellets compared to control cultures. Further, sEVs treatment suppressed secretion of MMP-1 in the DCs. Conclusion: hMSC derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.


2020 ◽  
pp. 1-13
Author(s):  
Lu Deng ◽  
Chang Wang ◽  
Chao He ◽  
Li Chen

OBJECTIVE: Bone mesenchymal stem cells (BMSCs) have been widely researched in cancer treatment, including hepatocellular carcinoma (HCC). This study intended to discuss the mechanism of miR-20a-3p in BMSCs-extracellular vesicles (EVs) in HCC apoptosis. METHODS: BMSCs were isolated and identified. EVs derived from BMSCs were extracted and identified. After overexpressing or inhibiting miR-20a-3p expression in BMSCs, EVs were extracted and acted on HCC cells and transplanted tumors. HCC cell apoptosis in the treatment of BMSCs-conditioned medium, BMSCs-EVs and/or miR-20a-3p mimic/inhibitor were evaluated, with the detection of levels of TRAIL and TRAIL-related proteins. A functional rescue experiment about c-FLIP was carried out in HCC cells. The target binding relationship between miR-20a-3p and c-FLIP was detected. The subcutaneous tumorigenesis model of mice was established and injected with BMSCs-EVs to estimate the effect of BMSCs-EVs-miR-20a-3p on HCC growth. RESULTS: EVs isolated from BMSCs conditioned medium promoted the apoptosis of HCC cells. After BMSCs-EVs treatment, TRAIL levels, downstream proteins and miR-20a-3p were increased significantly, but the expression of c-FLIP was decreased. miR-20a-3p could target c-FLIP. BMSCs-EVs inhibited the growth of HCC cells, decreased c-FLIP expression, increased TRAIL levels, and promote the of HCC cell apoptosis. BMSCs-EVs with overexpressing miR-20a-3p further enhanced the apoptotic effect of HCC cells in vitro and in vivo. CONCLUSION: BMSCs-EVs-carried miR-20a-3p targets c-FLIP and increases TRAIL levels in HCC cells, thus promoting TRAIL-related apoptosis.


2020 ◽  
Author(s):  
Daphne Hingert ◽  
Karin Ekström ◽  
Jonathan Aldridge ◽  
Rosella Crescitelli ◽  
Helena Brisby

Abstract Background Extracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and has been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSCs derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model. Methods hMSCs were isolated from bone marrow aspirate and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the EVs at 5 × 1010 vesicles/mL concentration for 28 days and compared to control. The pellets were harvested at day 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis and cytokine secretions. Results The findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEVs treated DC pellets compared to control cultures. Further, sEVs treatment suppressed secretion of MMP-1 in the DCs. Conclusion hMSC derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1072
Author(s):  
Enrico Ragni ◽  
Alessandra Colombini ◽  
Marco Viganò ◽  
Francesca Libonati ◽  
Carlotta Perucca Orfei ◽  
...  

Intra-articular administration of adipose-derived mesenchymal stem cells (ASCs), either in vitro expanded or within adipose tissue-based products obtained at point-of-care, has gained popularity as innovative regenerative medicine approach for osteoarthritis (OA) treatment. ASCs can stimulate tissue repair and immunomodulation through paracrine factors, both soluble and extracellular vesicles (EV) embedded, collectively defining the secretome. Interaction with the degenerative/inflamed environment is a crucial factor in understanding the finely tuned molecular message but, to date, the majority of reports have described ASC-secretome features in resting conditions or under chemical stimuli far from the in vivo environment of degenerated OA joints. In this report, the secretory profile of ASCs treated with native synovial fluid from OA patients was evaluated, sifting 200 soluble factors and 754 EV-embedded miRNAs. Fifty-eight factors and 223 EV-miRNAs were identified, and discussed in the frame of cartilage and immune cell homeostasis. Bioinformatics gave a molecular basis for M2 macrophage polarization, T cell proliferation inhibition and T reg expansion enhancement, as well as cartilage protection, further confirmed in an in vitro model of OA chondrocytes. Moreover, a strong influence on immune cell chemotaxis emerged. In conclusion, obtained molecular data support the regenerative and immunomodulatory properties of ASCs when interacting with osteoarthritic joint environment.


2019 ◽  
Vol 20 (18) ◽  
pp. 4597 ◽  
Author(s):  
Sharon Eleuteri ◽  
Alessandra Fierabracci

Mesenchymal stem cells (MSCs) have regenerative, immunoregulatory properties and can be easily isolated and expanded in vitro. Despite being a powerful tool for clinical applications, they present limitations in terms of delivery, safety, and variability of therapeutic response. Interestingly, the MSC secretome composed by cytokines, chemokines, growth factors, proteins, and extracellular vesicles, could represent a valid alternative to their use. It is noteworthy that MSC-derived extracellular vesicles (MSC-EVs) have the same effect and could be advantageous compared to the parental cells because of their specific miRNAs load. MiRNAs could be useful both in diagnostic procedures such as “liquid biopsy” to identify early pathologies and in the therapeutic field. Not only are MSC-EVs’ preservation, transfer, and production easier, but their administration is also safer, hence some clinical trials are ongoing. However, much effort is required to improve the characterization of EVs to avoid artifacts and guarantee reproducibility of the studies.


Sign in / Sign up

Export Citation Format

Share Document