Microseism Induced by Transient Release of In Situ Stress During Deep Rock Mass Excavation by Blasting

2012 ◽  
Vol 46 (4) ◽  
pp. 859-875 ◽  
Author(s):  
Jianhua Yang ◽  
Wenbo Lu ◽  
Ming Chen ◽  
Peng Yan ◽  
Chuangbing Zhou
2011 ◽  
Vol 90-93 ◽  
pp. 2033-2036 ◽  
Author(s):  
Jin Shan Sun ◽  
Hong Jun Guo ◽  
Wen Bo Lu ◽  
Qing Hui Jiang

The factors affecting the TBM tunnel behavior in jointed rock mass is investigated. In the numerical models the concrete segment lining of TBM tunnel is concerned, which is simulated as a tube neglecting the segment joint. And the TBM tunnel construction process is simulate considering the excavation and installing of the segment linings. Some cases are analyzed with different joint orientation, joint spacing, joint strength and tunnel depth. The results show that the shape and areas of loosing zones of the tunnel are influenced by the parameters of joint sets and in-situ stress significantly, such as dip angle, spacing, strength, and the in-situ stress statement. And the stress and deformation of the tunnel lining are influenced by the parameters of joint sets and in-situ stress, too.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2006 ◽  
Vol 306-308 ◽  
pp. 1509-1514 ◽  
Author(s):  
Jing Feng ◽  
Qian Sheng ◽  
Chao Wen Luo ◽  
Jing Zeng

It is very important to study the pristine stress field in Civil, Mining, Petroleum engineering as well as in Geology, Geophysics, and Seismology. There are various methods of determination of in-situ stress in rock mass. However, hydraulic fracturing techniques is the most convenient method to determine and interpret the test results. Based on an hydraulic fracturing stress measurement campaign at an underground liquefied petroleum gas storage project which locates in ZhuHai, China, this paper briefly describes the various uses of stress measurement, details of hydraulic fracturing test system, test procedure adopted and the concept of hydraulic fracturing in arriving at the in-situ stresses of the rock mass.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianan Li ◽  
Heping Xie ◽  
Ling Chen ◽  
Cong Li ◽  
Zhiqiang He

Exploration of deep-rock mechanics has a significant influence on the techniques of mining and rock mechanics. Rock coring technique is the basic method for all rock mechanics study. With the increase of the drilling depth and increasing strength of the hard rock, how to obtain high-quality rock core through various coring techniques is an eternal work. Here an innovative method is applied to design the new coring system to maximize the efficiency of operation. The stress conditions or parameters of rock core in the coring are analyzed, and the mechanism of the core with in situ stress is shown in this paper. The conflict of the core and coring tool chamber is proposed for the innovative design. The innovative design method is fulfilled by the theory of inventive problem solving (TRIZ). An improved coring system for the full-length core with in situ stress was obtained with the solutions of improved coring mechanism, cutting mechanism, and spiral drill pipe.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 518
Author(s):  
Babar Khan ◽  
Syed Muhammad Jamil ◽  
Jung Joo Kim ◽  
Turab H. Jafri ◽  
Jonguk Kim

To accommodate traffic volume on roads due to ever-increasing population growth, the widening of highways and motorways is in high demand. Nevertheless, the widening of tunnels on these road networks is quite complex due to the presence of numerous rock types, in situ stress, and different widening modes. To overcome these complexities, eight different tunnel shapes were simulated under varying support conditions for asymmetric and symmetric widening. It was found that the tunnels with a round shape, such as horseshoe and semicircular with flatbed, are more effective for asymmetric widening, whereas the provision of a rounded invert in these shapes can reverse the widening option to symmetric. Furthermore, an insignificant effect of the difference in asymmetric and symmetric widening of regular tunnel shapes, such as box, rectangular, and semi-elliptical, was found. A full factorial design statistical analysis confirmed the decrease in tunnel deformation by using various tunnel support systems and showed a significant deformation difference according to monitoring locations at the tunnel periphery. The deformation difference in the case of both tunnel widening modes was also analyzed according to different design parameters. This study provides a comprehensive understanding of rock mass behavior when the widening of any underground opening is carried out.


Author(s):  
Wenbo Lu ◽  
Jianhua Yang ◽  
Peng Yan ◽  
Ming Chen ◽  
Chuangbing Zhou ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jing Yang ◽  
Xing-Guo Yang ◽  
Jia-Wen Zhou ◽  
Yong Liu ◽  
Bao-Shun Dong ◽  
...  

The rock mass failure induced by high in-situ stresses during the excavation of deep diversion tunnels is one of the key problems in the construction of the Jinping II Hydropower Station. Based on the results of acoustic wave tests and rockburst statistical analysis conducted, this study focuses on the excavation damaged zone (EDZ) and rockburst events in the Jinping II diversion tunnels excavated using the tunnel boring machine (TBM) method and the drilling-blasting method. The unloading failure mechanism and the rockburst induced by the two different excavation methods were compared and analyzed. The results indicate that, due to the different stress adjustment processes, the degree of damage to the surrounding rock mass excavated using the drilling-blasting method was more serious than that using the TBM method. The EDZ induced by the TBM was usually distributed evenly along the edge of the excavation surface. While, the drilling-blasting method was more likely to cause stress concentration, resulting in a deeper EDZ in local areas. However, the TBM excavation method can cause other problems in high in-situ stress areas, such as strong rockbursts. The drilling-blasting method is more prone to structural controlled failure of the surrounding rock mass, while the TBM method would induce high stress concentration near the edge of excavation and more widely distributed of stress adjustment induced failure. As a result, the scale and frequency of the rockburst events generated by the TBM were significantly greater than those caused by the drilling-blasting method during the excavation of Jinping II diversion tunnels. The TBM method should be used carefully for tunnel excavation in high in-situ stress areas with burial depths of greater than 2000 m. If it is necessary to use the TBM method after a comprehensive selection, it is suggested that equipment adaptability improvement, advanced prediction, and prediction technology be used.


Sign in / Sign up

Export Citation Format

Share Document