Reusing training data with generative/discriminative hybrid model for practical acceleration-based activity recognition

Computing ◽  
2013 ◽  
Vol 96 (9) ◽  
pp. 875-895 ◽  
Author(s):  
Quan Kong ◽  
Takuya Maekawa
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 845
Author(s):  
Dongheun Han ◽  
Chulwoo Lee ◽  
Hyeongyeop Kang

The neural-network-based human activity recognition (HAR) technique is being increasingly used for activity recognition in virtual reality (VR) users. The major issue of a such technique is the collection large-scale training datasets which are key for deriving a robust recognition model. However, collecting large-scale data is a costly and time-consuming process. Furthermore, increasing the number of activities to be classified will require a much larger number of training datasets. Since training the model with a sparse dataset can only provide limited features to recognition models, it can cause problems such as overfitting and suboptimal results. In this paper, we present a data augmentation technique named gravity control-based augmentation (GCDA) to alleviate the sparse data problem by generating new training data based on the existing data. The benefits of the symmetrical structure of the data are that it increased the number of data while preserving the properties of the data. The core concept of GCDA is two-fold: (1) decomposing the acceleration data obtained from the inertial measurement unit (IMU) into zero-gravity acceleration and gravitational acceleration, and augmenting them separately, and (2) exploiting gravity as a directional feature and controlling it to augment training datasets. Through the comparative evaluations, we validated that the application of GCDA to training datasets showed a larger improvement in classification accuracy (96.39%) compared to the typical data augmentation methods (92.29%) applied and those that did not apply the augmentation method (85.21%).


Informatics ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 38 ◽  
Author(s):  
Martin Jänicke ◽  
Bernhard Sick ◽  
Sven Tomforde

Personal wearables such as smartphones or smartwatches are increasingly utilized in everyday life. Frequently, activity recognition is performed on these devices to estimate the current user status and trigger automated actions according to the user’s needs. In this article, we focus on the creation of a self-adaptive activity recognition system based on IMU that includes new sensors during runtime. Starting with a classifier based on GMM, the density model is adapted to new sensor data fully autonomously by issuing the marginalization property of normal distributions. To create a classifier from that, label inference is done, either based on the initial classifier or based on the training data. For evaluation, we used more than 10 h of annotated activity data from the publicly available PAMAP2 benchmark dataset. Using the data, we showed the feasibility of our approach and performed 9720 experiments, to get resilient numbers. One approach performed reasonably well, leading to a system improvement on average, with an increase in the F-score of 0.0053, while the other one shows clear drawbacks due to a high loss of information during label inference. Furthermore, a comparison with state of the art techniques shows the necessity for further experiments in this area.


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1262 ◽  
Author(s):  
Muhammad Razzaq ◽  
Ian Cleland ◽  
Chris Nugent ◽  
Sungyoung Lee

Activity recognition (AR) is a subtask in pervasive computing and context-aware systems, which presents the physical state of human in real-time. These systems offer a new dimension to the widely spread applications by fusing recognized activities obtained from the raw sensory data generated by the obtrusive as well as unobtrusive revolutionary digital technologies. In recent years, an exponential growth has been observed for AR technologies and much literature exists focusing on applying machine learning algorithms on obtrusive single modality sensor devices. However, University of Jaén Ambient Intelligence (UJAmI), a Smart Lab in Spain has initiated a 1st UCAmI Cup challenge by sharing aforementioned varieties of the sensory data in order to recognize the human activities in the smart environment. This paper presents the fusion, both at the feature level and decision level for multimodal sensors by preprocessing and predicting the activities within the context of training and test datasets. Though it achieves 94% accuracy for training data and 47% accuracy for test data. However, this study further evaluates post-confusion matrix also and draws a conclusion for various discrepancies such as imbalanced class distribution within the training and test dataset. Additionally, this study also highlights challenges associated with the datasets for which, could improve further analysis.


2021 ◽  
Vol 1 (1) ◽  
pp. 52-65
Author(s):  
Drajat Indra Purnama

ABSTRAKInvestasi emas merupakan salah satu investasi yang menjadi favorit dimasa pandemi Covid 19 seperti sekarang ini. Hal ini dikarenakan harga emas yang nilainya relatif fluktuatif tetapi menunjukkan tren peningkatan. Investor dituntut pandai dalam berinvestasi emas, mampu memprediksi peluang dimasa yang akan datang. Salah satu model peramalan data deret waktu adalah model Autoregressive Integrated Moving Average (ARIMA). Model ARIMA baik digunakan pada data yang berpola linear tetapi jika digunakan pada data data nonlinear keakuratannya menurun. Untuk mengatasi permasalahan data nonlinear dapat menggunakan model Support Vector Regression (SVR). Pengujian linearitas pada data harga emas menunjukkan adanya pola data linear dan nonlinear sekaligus sehingga digunakan kombinasi ARIMA dan SVR yaitu model hybrid ARIMA-SVR. Hasil peramalan menggunakan model hybrid ARIMA-SVR menunjukkan hasil lebih baik dibanding model ARIMA. Hal ini dibuktikan dengan nilai MAPE model hybrid ARIMA-SVR lebih kecil dibandingkan nilai MAPE model ARIMA. Nilai MAPE model hybrid ARIMA-SVR sebesar 0,355 pada data training dan 4,001 pada data testing, sedangkan nilai MAPE model ARIMA sebesar 0,903 pada data training dan 4,076 pada data testing.ABSTRACTGold investment is one of the favorite investments during the Covid 19 pandemic as it is today. This is because the price of gold is relatively volatile but shows an increasing trend. Investors are required to be smart in investing in gold, able to predict future opportunities. One of the time series data forecasting models is the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model is good for use on linear patterned data but if it is used on nonlinear data the accuracy decreases. To solve the problem of nonlinear data, you can use the Support Vector Regression (SVR) model. The linearity test on the gold price data shows that there are linear and nonlinear data patterns at the same time so that a combination of ARIMA and SVR is used, namely the ARIMA-SVR hybrid model. Forecasting results using the ARIMA-SVR hybrid model show better results than the ARIMA model. This is evidenced by the MAPE value of the ARIMA-SVR hybrid model which is smaller than the MAPE value of the ARIMA model. The MAPE value of the ARIMA-SVR hybrid model is 0.355 on the training data and 4.001 on the testing data, while the MAPE value of the ARIMA model is 0.903 in the training data and 4.076 in the testing data.


2021 ◽  
Author(s):  
Drajat Indra Purnama

Gold investment is one of the favorite investments during the Covid 19 pandemic as it is today. This is because the price of gold is relatively volatile but shows an increasing trend. Investors are required to be smart in investing in gold, able to predict future opportunities. One of the time series data forecasting models is the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model is good for use on linear patterned data but if it is used on nonlinear data the accuracy decreases. To solve the problem of nonlinear data, you can use the Support Vector Regression (SVR) model. The linearity test on the gold price data shows that there are linear and nonlinear data patterns at the same time so that a combination of ARIMA and SVR is used, namely the ARIMA-SVR hybrid model. Forecasting results using the ARIMA-SVR hybrid model show better results than the ARIMA model. This is evidenced by the MAPE value of the ARIMA-SVR hybrid model which is smaller than the MAPE value of the ARIMA model. The MAPE value of the ARIMA-SVR hybrid model is 0.355 on the training data and 4.001 on the testing data, while the MAPE value of the ARIMA model is 0.903 in the training data and 4.076 in the testing data.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 825 ◽  
Author(s):  
Fadi Al Machot ◽  
Mohammed R. Elkobaisi ◽  
Kyandoghere Kyamakya

Due to significant advances in sensor technology, studies towards activity recognition have gained interest and maturity in the last few years. Existing machine learning algorithms have demonstrated promising results by classifying activities whose instances have been already seen during training. Activity recognition methods based on real-life settings should cover a growing number of activities in various domains, whereby a significant part of instances will not be present in the training data set. However, to cover all possible activities in advance is a complex and expensive task. Concretely, we need a method that can extend the learning model to detect unseen activities without prior knowledge regarding sensor readings about those previously unseen activities. In this paper, we introduce an approach to leverage sensor data in discovering new unseen activities which were not present in the training set. We show that sensor readings can lead to promising results for zero-shot learning, whereby the necessary knowledge can be transferred from seen to unseen activities by using semantic similarity. The evaluation conducted on two data sets extracted from the well-known CASAS datasets show that the proposed zero-shot learning approach achieves a high performance in recognizing unseen (i.e., not present in the training dataset) new activities.


2021 ◽  
Vol 25 (2) ◽  
pp. 38-42
Author(s):  
Hyeokhyen Kwon ◽  
Catherine Tong ◽  
Harish Haresamudram ◽  
Yan Gao ◽  
Gregory D. Abowd ◽  
...  

Today's smartphones and wearable devices come equipped with an array of inertial sensors, along with IMU-based Human Activity Recognition models to monitor everyday activities. However, such models rely on large amounts of annotated training data, which require considerable time and effort for collection. One has to recruit human subjects, define clear protocols for the subjects to follow, and manually annotate the collected data, along with the administrative work that goes into organizing such a recording.


Author(s):  
Hela Sfar ◽  
Amel Bouzeghoub ◽  
Nathan Ramoly ◽  
Jérôme Boudy

Sign in / Sign up

Export Citation Format

Share Document