Estimating daily pan evaporation using artificial neural network in a semi-arid environment

2009 ◽  
Vol 98 (1-2) ◽  
pp. 101-105 ◽  
Author(s):  
Ali Rahimikhoob
2019 ◽  
Vol 20 (3) ◽  
pp. 800-808
Author(s):  
G. T. Patle ◽  
M. Chettri ◽  
D. Jhajharia

Abstract Accurate estimation of evaporation from agricultural fields and water bodies is needed for the efficient utilisation and management of water resources at the watershed and regional scale. In this study, multiple linear regression (MLR) and artificial neural network (ANN) techniques are used for the estimation of monthly pan evaporation. The modelling approach includes the various combination of six measured climate parameters consisting of maximum and minimum air temperature, maximum and minimum relative humidity, sunshine hours and wind speed of two stations, namely Gangtok in Sikkim and Imphal in the Manipur states of the northeast hill region of India. Average monthly evaporation varies from 0.62 to 2.68 mm/day for Gangtok, whereas it varies from 1.4 to 4.3 mm/day for Imphal during January and June, respectively. Performance of the developed MLR and ANN models was compared using statistical indices such as coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) with measured pan evaporation values. Correlation analysis revealed that temperature, wind speed and sunshine hour had positive correlation, whereas relative humidity had a negative correlation with pan evaporation. Results showed a slightly better performance of the ANN models over the MLR models for the prediction of monthly pan evaporation in the study area.


2004 ◽  
Vol 18 (13) ◽  
pp. 2387-2393 ◽  
Author(s):  
S. Riad ◽  
J. Mania ◽  
L. Bouchaou ◽  
Y. Najjar

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 85 ◽  
Author(s):  
Thabo Michael Bafitlhile ◽  
Zhijia Li

The aim of this study was to develop hydrological models that can represent different geo-climatic system, namely: humid, semi-humid and semi-arid systems, in China. Humid and semi-humid areas suffer from frequent flood events, whereas semi-arid areas suffer from flash floods because of urbanization and climate change, which contribute to an increase in runoff. This study applied ɛ-Support Vector Machine (ε-SVM) and artificial neural network (ANN) for the simulation and forecasting streamflow of three different catchments. The Evolutionary Strategy (ES) optimization method was used to optimize the ANN and SVM sensitive parameters. The relative performance of the two models was compared, and the results indicate that both models performed well for humid and semi-humid systems, and SVM generally perform better than ANN in the streamflow simulation of all catchments.


Sign in / Sign up

Export Citation Format

Share Document