Meteorologically consistent bias correction of climate time series for agricultural models

2012 ◽  
Vol 110 (1-2) ◽  
pp. 129-141 ◽  
Author(s):  
Holger Hoffmann ◽  
Thomas Rath
Author(s):  
Jennifer L. Castle ◽  
David F. Hendry

Shared features of economic and climate time series imply that tools for empirically modeling nonstationary economic outcomes are also appropriate for studying many aspects of observational climate-change data. Greenhouse gas emissions, such as carbon dioxide, nitrous oxide, and methane, are a major cause of climate change as they cumulate in the atmosphere and reradiate the sun’s energy. As these emissions are currently mainly due to economic activity, economic and climate time series have commonalities, including considerable inertia, stochastic trends, and distributional shifts, and hence the same econometric modeling approaches can be applied to analyze both phenomena. Moreover, both disciplines lack complete knowledge of their respective data-generating processes (DGPs), so model search retaining viable theory but allowing for shifting distributions is important. Reliable modeling of both climate and economic-related time series requires finding an unknown DGP (or close approximation thereto) to represent multivariate evolving processes subject to abrupt shifts. Consequently, to ensure that DGP is nested within a much larger set of candidate determinants, model formulations to search over should comprise all potentially relevant variables, their dynamics, indicators for perturbing outliers, shifts, trend breaks, and nonlinear functions, while retaining well-established theoretical insights. Econometric modeling of climate-change data requires a sufficiently general model selection approach to handle all these aspects. Machine learning with multipath block searches commencing from very general specifications, usually with more candidate explanatory variables than observations, to discover well-specified and undominated models of the nonstationary processes under analysis, offers a rigorous route to analyzing such complex data. To do so requires applying appropriate indicator saturation estimators (ISEs), a class that includes impulse indicators for outliers, step indicators for location shifts, multiplicative indicators for parameter changes, and trend indicators for trend breaks. All ISEs entail more candidate variables than observations, often by a large margin when implementing combinations, yet can detect the impacts of shifts and policy interventions to avoid nonconstant parameters in models, as well as improve forecasts. To characterize nonstationary observational data, one must handle all substantively relevant features jointly: A failure to do so leads to nonconstant and mis-specified models and hence incorrect theory evaluation and policy analyses.


2020 ◽  
Author(s):  
Andreas Gerhardus ◽  
Jakob Runge

<p>Scientific inquiry seeks to understand natural phenomena by understanding their underlying processes, i.e., by identifying cause and effect. In addition to mere scientific curiosity, an understanding of cause and effect relationships is necessary to predict the effect of changing dynamical regimes and for the attribution of extreme events to potential causes. It is thus an important question to ask how, in cases where controlled experiments are not feasible, causation can still be inferred from the statistical dependencies in observed time series.</p><p>A central obstacle for such an inference is the potential existence of unobserved causally relevant variables. Arguably, this is more likely to be the case than not, for example unmeasured deep oceanic variables in atmospheric processes. Unobserved variables can act as confounders (meaning they are a common cause of two or more observed variables) and thus introduce spurious, i.e., non-causal dependencies. Despite these complications, the last three decades have seen the development of so-called causal discovery algorithms (an example being FCI by Spirtes et al., 1999) that are often able to identify spurious associations and to distinguish them from genuine causation. This opens the possibility for a data-driven approach to infer cause and effect relationships among climate variables, thereby contributing to a better understanding of Earth's complex climate system.</p><p>These methods are, however, not yet well adapted to some specific challenges that climate time series often come with, e.g. strong autocorrelation, time lags and nonlinearities. To close this methodological gap, we generalize the ideas of the recent PCMCI causal discovery algorithm (Runge et al., 2019) to time series where unobserved causally relevant variables may exist (in contrast, PCMCI made the assumption of no confounding). Further, we present preliminary applications to modes of climate variability.</p>


Author(s):  
Bekan Chelkeba Tumsa

Abstract Selecting a suitable bias correction method is important to provide reliable inputs for evaluation of climate change impact. Their influence was studied by comparing three discharge outputs from the SWAT model. The result after calibration with original RCM indicate that the raw RCM are heavily biased, and lead to streamflow simulation with large biases (NSE = 0.1, R2 = 0.53, MAE = 5.91 mm/°C, and PBIAS = 0.51). Power transformation and linear scaling methods performed best in correcting the frequency-based indices, while the LS method performed best in terms of the time series-based indices (NSE = 0.87, R2 = 0.78, MAE = 3.14 mm/°C, PBIAS = 0.24) during calibration. Meanwhile, daily translation was underestimating simulated streamflow compared with observed and considered as the least performing method. Precipitation correction method has higher visual influence than temperature, and its performance in streamflow simulations was consistent and significantly considerable. Power transformation and variance scaling showed highly qualified performance compared to others with indicated time series value (NSE = 0.92, R2 = 0.88, MAE = 1.58 mm/°C and PBIAS = 0.12) during calibration and validation of streamflow. Hence, PT and VARI methods were the dominant methods which remove biasness from RCM models at Akaki River basin.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
E Afrifa‐Yamoah ◽  
U. A. Mueller ◽  
S. M. Taylor ◽  
A. J. Fisher

Sign in / Sign up

Export Citation Format

Share Document