In silico classification and virtual screening of maleimide derivatives using projection to latent structures discriminant analysis (PLS-DA) and hybrid docking

2012 ◽  
Vol 143 (11) ◽  
pp. 1559-1573 ◽  
Author(s):  
Liliana Pacureanu ◽  
Luminita Crisan ◽  
Alina Bora ◽  
Sorin Avram ◽  
Ludovic Kurunczi
2019 ◽  
Author(s):  
Filip Fratev ◽  
Denisse A. Gutierrez ◽  
Renato J. Aguilera ◽  
suman sirimulla

AKT1 is emerging as a useful target for treating cancer. Herein, we discovered a new set of ligands that inhibit the AKT1, as shown by in vitro binding and cell line studies, using a newly designed virtual screening protocol that combines structure-based pharmacophore and docking screens. Taking together with the biological data, the combination of structure based pharamcophore and docking methods demonstrated reasonable success rate in identifying new inhibitors (60-70%) proving the success of aforementioned approach. A detail analysis of the ligand-protein interactions was performed explaining observed activities.<br>


2020 ◽  
Vol 27 (38) ◽  
pp. 6523-6535 ◽  
Author(s):  
Antreas Afantitis ◽  
Andreas Tsoumanis ◽  
Georgia Melagraki

Drug discovery as well as (nano)material design projects demand the in silico analysis of large datasets of compounds with their corresponding properties/activities, as well as the retrieval and virtual screening of more structures in an effort to identify new potent hits. This is a demanding procedure for which various tools must be combined with different input and output formats. To automate the data analysis required we have developed the necessary tools to facilitate a variety of important tasks to construct workflows that will simplify the handling, processing and modeling of cheminformatics data and will provide time and cost efficient solutions, reproducible and easier to maintain. We therefore develop and present a toolbox of >25 processing modules, Enalos+ nodes, that provide very useful operations within KNIME platform for users interested in the nanoinformatics and cheminformatics analysis of chemical and biological data. With a user-friendly interface, Enalos+ Nodes provide a broad range of important functionalities including data mining and retrieval from large available databases and tools for robust and predictive model development and validation. Enalos+ Nodes are available through KNIME as add-ins and offer valuable tools for extracting useful information and analyzing experimental and virtual screening results in a chem- or nano- informatics framework. On top of that, in an effort to: (i) allow big data analysis through Enalos+ KNIME nodes, (ii) accelerate time demanding computations performed within Enalos+ KNIME nodes and (iii) propose new time and cost efficient nodes integrated within Enalos+ toolbox we have investigated and verified the advantage of GPU calculations within the Enalos+ nodes. Demonstration data sets, tutorial and educational videos allow the user to easily apprehend the functions of the nodes that can be applied for in silico analysis of data.


2020 ◽  
Vol 20 (3) ◽  
pp. 223-235
Author(s):  
Pooja Shah ◽  
Vishal Chavda ◽  
Snehal Patel ◽  
Shraddha Bhadada ◽  
Ghulam Md. Ashraf

Background: Postprandial hyperglycemia considered to be a major risk factor for cerebrovascular complications. Objective: The current study was designed to elucidate the beneficial role of voglibose via in-silico in vitro to in-vivo studies in improving the postprandial glycaemic state by protection against strokeprone type 2 diabetes. Material and Methods: In-Silico molecular docking and virtual screening were carried out with the help of iGEMDOCK+ Pymol+docking software and Protein Drug Bank database (PDB). Based on the results of docking studies, in-vivo investigation was carried out for possible neuroprotective action. T2DM was induced by a single injection of streptozotocin (90mg/kg, i.v.) to neonates. Six weeks after induction, voglibose was administered at the dose of 10mg/kg p.o. for two weeks. After eight weeks, diabetic rats were subjected to middle cerebral artery occlusion, and after 72 hours of surgery, neurological deficits were determined. The blood was collected for the determination of serum glucose, CK-MB, LDH and lipid levels. Brains were excised for determination of brain infarct volume, brain hemisphere weight difference, Na+-K+ ATPase activity, ROS parameters, NO levels, and aldose reductase activity. Results: In-silico docking studies showed good docking binding score for stroke associated proteins, which possibly hypotheses neuroprotective action of voglibose in stroke. In the present in-vivo study, pre-treatment with voglibose showed a significant decrease (p<0.05) in serum glucose and lipid levels. Voglibose has shown significant (p<0.05) reduction in neurological score, brain infarct volume, the difference in brain hemisphere weight. On biochemical evaluation, treatment with voglibose produced significant (p<0.05) decrease in CK-MB, LDH, and NO levels in blood and reduction in Na+-K+ ATPase, oxidative stress, and aldose reductase activity in brain homogenate. Conclusion: In-silico molecular docking and virtual screening studies and in-vivo studies in MCAo induced stroke, animal model outcomes support the strong anti-stroke signature for possible neuroprotective therapeutics.


2018 ◽  
Vol 15 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Md. Mostafijur Rahman ◽  
Md. Bayejid Hosen ◽  
M. Zakir Hossain Howlader ◽  
Yearul Kabir

Background: 3C-like protease also called the main protease is an essential enzyme for the completion of the life cycle of Middle East Respiratory Syndrome Coronavirus. In our study we predicted compounds which are capable of inhibiting 3C-like protease, and thus inhibit the lifecycle of Middle East Respiratory Syndrome Coronavirus using in silico methods. </P><P> Methods: Lead like compounds and drug molecules which are capable of inhibiting 3C-like protease was identified by structure-based virtual screening and ligand-based virtual screening method. Further, the compounds were validated through absorption, distribution, metabolism and excretion filtering. Results: Based on binding energy, ADME properties, and toxicology analysis, we finally selected 3 compounds from structure-based virtual screening (ZINC ID: 75121653, 41131653, and 67266079) having binding energy -7.12, -7.1 and -7.08 Kcal/mol, respectively and 5 compounds from ligandbased virtual screening (ZINC ID: 05576502, 47654332, 04829153, 86434515 and 25626324) having binding energy -49.8, -54.9, -65.6, -61.1 and -66.7 Kcal/mol respectively. All these compounds have good ADME profile and reduced toxicity. Among eight compounds, one is soluble in water and remaining 7 compounds are highly soluble in water. All compounds have bioavailability 0.55 on the scale of 0 to 1. Among the 5 compounds from structure-based virtual screening, 2 compounds showed leadlikeness. All the compounds showed no inhibition of cytochrome P450 enzymes, no blood-brain barrier permeability and no toxic structure in medicinal chemistry profile. All the compounds are not a substrate of P-glycoprotein. Our predicted compounds may be capable of inhibiting 3C-like protease but need some further validation in wet lab.


Author(s):  
Ashish Shah ◽  
Ghanshyam Parmar ◽  
Avinash Kumar Seth

Background: The concept of synthetic lethality is emerging field in the treatment of cancer and can be applied for new drug development of cancer as it has been already represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. Objectives: In this study we performed virtual screening of 329 flavonoids obtained from Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target (NPACT) database to identify novel PARP inhibitors. Materials and methods: Virtual screening carried out using different In Silico methods which includes molecular docking studies, prediction of druglikeness and In Silico toxicity studies. Results: Fifteen out of 329 flavonoids achieved better docking score as compared to rucaparib which is an FDA approved PARP inhibitor. These 15 hits were again rescored using accurate docking mode and drug-likeliness properties were evaluated. Accuracy of docking method was checked using re-docking. Finally NPACT00183 and NPACT00280 were identified as potential PARP inhibitors with docking score of -139.237 and -129.36 respectively. These two flavonoids were also showed no AMES toxicity and no carcinogenicity which was predicted using admetSAR. Conclusion: Our finding suggests that NPACT00183 and NPACT00280 have promising potential to be further explored as PARP inhibitors.


2020 ◽  
Vol 17 (1) ◽  
pp. 87-94
Author(s):  
Ibrahim A. Naguib ◽  
Fatma F. Abdallah ◽  
Aml A. Emam ◽  
Eglal A. Abdelaleem

: Quantitative determination of pyridostigmine bromide in the presence of its two related substances; impurity A and impurity B was considered as a case study to construct the comparison. Introduction: Novel manipulations of the well-known classical least squares multivariate calibration model were explained in detail as a comparative analytical study in this research work. In addition to the application of plain classical least squares model, two preprocessing steps were tried, where prior to modeling with classical least squares, first derivatization and orthogonal projection to latent structures were applied to produce two novel manipulations of the classical least square-based model. Moreover, spectral residual augmented classical least squares model is included in the present comparative study. Methods: 3 factor 4 level design was implemented constructing a training set of 16 mixtures with different concentrations of the studied components. To investigate the predictive ability of the studied models; a test set consisting of 9 mixtures was constructed. Results: The key performance indicator of this comparative study was the root mean square error of prediction for the independent test set mixtures, where it was found 1.367 when classical least squares applied with no preprocessing method, 1.352 when first derivative data was implemented, 0.2100 when orthogonal projection to latent structures preprocessing method was applied and 0.2747 when spectral residual augmented classical least squares was performed. Conclusion: Coupling of classical least squares model with orthogonal projection to latent structures preprocessing method produced significant improvement of the predictive ability of it.


Author(s):  
Pragya Nayak ◽  
Monica Kachroo

: A series of new heteroaryl thiazolidine-4-one derivatives were designed and subjected to in-silico prioritization using various virtual screening strategies. Two series of thiazolidinone derivatives were synthesized and screened for their in-vitro antitubercular, anticancer, antileishmanial and antibacterial (Staphylococcus aureus; Streptococcus pneumonia; Escherichia coli; Pseudomonas aeruginosa) activities. The compounds with electronegative substitutions exhibited positive antitubercular activity, the derivatives possessing a methyl substitution exhibited good inhibitory response against breast cancer cell line MCF-7 while the compounds possessing a hydrogen bond acceptor site like hydroxyl and methoxy substitution in their structures exhibited good in-vitro antileishmanial activity. Some compounds exhibited potent activity against gram positive bacteria Pseudomonas aeruginosa as compared to the standards. Altogether, the designed compounds exhibited good in-vitro anti-infective potential which was in good agreement with the in-silico predictions and they can be developed as important lead molecules for anti-infective and chemotherapeutic drug research.


2020 ◽  
Vol 18 ◽  
Author(s):  
Debadash Panigrahi ◽  
Ganesh Prasad Mishra

Objective:: Recent pandemic caused by SARS-CoV-2 described in Wuhan China in December-2019 spread widely almost all the countries of the world. Corona virus (COVID-19) is causing the unexpected death of many peoples and severe economic loss in several countries. Virtual screening based on molecular docking, drug-likeness prediction, and in silico ADMET study has become an effective tool for the identification of small molecules as novel antiviral drugs to treat diseases. Methods:: In the current study, virtual screening was performed through molecular docking for identifying potent inhibitors against Mpro enzyme from the ZINC library for the possible treatment of COVID-19 pandemic. Interestingly, some compounds are identified as possible anti-covid-19 agents for future research. 350 compounds were screened based on their similarity score with reference compound X77 from ZINC data bank and were subjected to docking with crystal structure available of Mpro enzyme. These compounds were then filtered by their in silico ADME-Tox and drug-likeness prediction values. Result:: Out of these 350 screened compounds, 10 compounds were selected based on their docking score and best docked pose in comparison to the reference compound X77. In silico ADME-Tox and drug likeliness predictions of the top compounds were performed and found to be excellent results. All the 10 screened compounds showed significant binding pose with the target enzyme main protease (Mpro) enzyme and satisfactory pharmacokinetic and toxicological properties. Conclusion:: Based on results we can suggest that the identified compounds may be considered for therapeutic development against the COVID-19 virus and can be further evaluated for in vitro activity, preclinical, clinical studies and formulated in a suitable dosage form to maximize their bioavailability.


Sign in / Sign up

Export Citation Format

Share Document