Structure-based design of novel pyrazolyl–chalcones as anti-cancer and antimicrobial agents: synthesis and in vitro studies

Author(s):  
Monica G. Kamel ◽  
Farid M. Sroor ◽  
Abdelmageed M. Othman ◽  
Karima F. Mahrous ◽  
Fatma M. Saleh ◽  
...  
2020 ◽  
Vol 10 (6) ◽  
pp. 315-324
Author(s):  
Fahmi Radityamurti ◽  
Fauzan Herdian ◽  
Tiara Bunga Mayang Permata ◽  
Handoko Handoko ◽  
Henry Kodrat ◽  
...  

Introduction: Vitamin D has been shown to have anti-cancer properties such as antioxidants, anti-proliferative, and cell differentiation. The property of vitamin D as an anticancer agent triggers researchers to find out whether vitamin D is useful as a radiosensitizer. Multiple studies have been carried out on cell lines in various types of cancer, but the benefits of vitamin D as a radiosensitizer still controversial. This paperwork aims to investigate the utilization of Vitamin D3 (Calcitriol) as radiosensitizer in various cell line through literature review.Methods: A systematic search of available medical literature databases was performed on in-vitro studies with Vitamin D as a radiosensitizer in all types of cell lines. A total of 11 in-vitro studies were evaluated.Results: Nine studies in this review showed a significant effect of Vitamin D as a radiosensitizer agent by promoting cytotoxic autophagy, increasing apoptosis, inhibiting of cell survival and proliferation, promoting gene in ReIB inhibition, inducing senescene and necrosis. The two remaining studies showed no significant effect in the radiosensitizing mechanism of Vitamin D due to lack of evidence in-vitro settings.Conclusion: Vitamin D have anticancer property and can be used as a radiosensitizer by imploring various mechanism pathways in various cell lines. Further research especially in-vivo settings need to be evaluated.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 382
Author(s):  
Mario Dioguardi ◽  
Giorgia Apollonia Caloro ◽  
Luigi Laino ◽  
Mario Alovisi ◽  
Diego Sovereto ◽  
...  

The Rhopalurus junceus is a scorpion belonging to the Buthidae family that finds its habitat in Cuba. This scorpion is known by the common name of “Blue Scorpion”. The venom is used on the island of Cuba as an alternative cure for cancer and, more recently, in the research of active components for biomedicine. Recently, the venom has been tested in several studies to investigate its effects on cancer cell lines, and the initial results of in vitro studies demonstrated how this poison can be effective on certain carcinoma cell lines (Hela, SiHa, Hep-2, NCI-H292, A549, MDA-MB-231, MDA-MB-468, and HT-29). The aim of this review is, therefore, to describe the effects of the venom on carcinoma lines and to investigate all anti-cancer properties studied in the literature. The research was conducted using four databases, Pub Med, Scopus, EBSCO, and Web of Science, through the use of keywords, by two independent reviewers following the PRISMA protocol, identifying 57 records. The results led to a total of 13 articles that met the eligibility criteria. The data extracted for the purpose of meta-analysis included the IC50 of the venom on carcinoma cell lines. The results of the meta-analysis provided a pooled mean of the IC50 of 0.645 mg/mL (95% CI: 0.557, 0.733), with a standard error (SE) = 0.045, p < 0.001. The analysis of the subgroups, differentiated by the type of cell line used, provided insight regarding how the scorpion venom was effective on the cell lines of lung origin (NCI-H292, A549, and MRC-5) with a pooled mean of IC50 0.460 mg/mL (95% CI: 0.290, 0.631) SE (0.087) p < 0.001. The results described in the literature for in vitro studies are encouraging, and further investigations should be carried out and deepened.


Life Sciences ◽  
2017 ◽  
Vol 185 ◽  
pp. 73-84 ◽  
Author(s):  
Shreelekha Dutta ◽  
Prashant S. Kharkar ◽  
Niteshkumar U. Sahu ◽  
Aparna Khanna

2019 ◽  
Vol 224 ◽  
pp. 328-333 ◽  
Author(s):  
Sathyaraj Weslen Vedakumari ◽  
Rethinam Senthil ◽  
Sathiya Sekar ◽  
Chidambaram Saravana Babu ◽  
Thotapalli Parvathaleswara Sastry

2014 ◽  
Vol 24 (18) ◽  
pp. 4580-4585 ◽  
Author(s):  
Ravendra Babu Kilaru ◽  
Koteswara Rao Valasani ◽  
Nanda Kumar Yellapu ◽  
Hari Prasad Osuru ◽  
Chandra Sekhar Kuruva ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 9296
Author(s):  
Sachin Bhoora ◽  
Rivak Punchoo

Vitamin D is a steroid hormone crucial for bone mineral metabolism. In addition, vitamin D has pleiotropic actions in the body, including anti-cancer actions. These anti-cancer properties observed within in vitro studies frequently report the reduction of cell proliferation by interruption of the cell cycle by the direct alteration of cell cycle regulators which induce cell cycle arrest. The most recurrent reported mode of cell cycle arrest by vitamin D is at the G1/G0 phase of the cell cycle. This arrest is mediated by p21 and p27 upregulation, which results in suppression of cyclin D and E activity which leads to G1/G0 arrest. In addition, vitamin D treatments within in vitro cell lines have observed a reduced C-MYC expression and increased retinoblastoma protein levels that also result in G1/G0 arrest. In contrast, G2/M arrest is reported rarely within in vitro studies, and the mechanisms of this arrest are poorly described. Although the relationship of epigenetics on vitamin D metabolism is acknowledged, studies exploring a direct relationship to cell cycle perturbation is limited. In this review, we examine in vitro evidence of vitamin D and vitamin D metabolites directly influencing cell cycle regulators and inducing cell cycle arrest in cancer cell lines.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4925-4925
Author(s):  
Zhi-Wei Li ◽  
Mengyin Hu ◽  
Crystal Leung ◽  
Jeffrey A Steinberg ◽  
Jing Shen ◽  
...  

Abstract Abstract 4925 Multiple myeloma (MM) remains an incurable malignancy. Therefore, there is a need for the development of new agents to improve the survival for these patients. Histone acetylation, which is controlled by the balanced activities between histone acetyltransferase (HAT) and histone deacetylase (HDAC), is a major epigenetic modification that contributes to tumorigenesis. Through inhibition of HDAC activity, HDAC inhibitors (HDACis) increase acetylation levels of histones as well as other tumor suppressor gene products; and, therefore, are potential anti-cancer agents. Based on the structures, currently available HDAC inhibitors can be divided into four groups, including hydroxamates, cyclic peptides, aliphatic acids, and benzamides. Largazole is a novel member of the cyclic peptide family of HDACis some of which have shown anti-cancer effects in preclinical studies and early clinical trials including for patients with MM especially when used in combination with the proteasome inhibitor bortezomib. In this study, we have explored the potential anti-MM activity of largazole alone and in combination with bortezomib in preclinical in vitro studies. As demonstrated using the MTS assay, this HDACi inhibits the growth of cells from the MM cell lines RPMI8226, U266 and MM1S with an IC50 of approximately 0.2 μM in all three cell lines. In addition, largazole also induces apoptotic death of MM cells as determined with Annexin V staining followed by flow cytometric analysis. Largazole was also shown to induce histone acetylation in MM cells as determined with Western blot analysis using an antibody against acetyl-histone H4. Furthermore, the combination of this HDACi and bortezomib demonstrated synergistic anti-MM effects in these cell lines. Importantly, treatment of mice with largazole shows excellent tolerability at doses that produce concentrations in vivo that are higher than those shown to produce anti-MM effects in our in vitro studies. Thus, largazole may be a potential new agent for the treatment of MM alone and in combination with bortezomib. Currently, we are evaluating the cytotoxic effects of largazole on normal peripheral blood and bone marrow mononuclear cells in vitro and in vivo using our severe combined immunodeficiency mouse models of human myeloma alone as well as in combination with several other drugs including bortezomib used in the treatment of MM. Updated results from these ongoing studies will be presented at the meeting. Disclosures Berenson: Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria, Research Funding, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document