Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments

Extremophiles ◽  
2008 ◽  
Vol 12 (4) ◽  
pp. 605-615 ◽  
Author(s):  
Soo-Je Park ◽  
Byoung-Joon Park ◽  
Sung-Keun Rhee
2010 ◽  
Vol 76 (22) ◽  
pp. 7575-7587 ◽  
Author(s):  
Byoung-Joon Park ◽  
Soo-Je Park ◽  
Dae-No Yoon ◽  
Stefan Schouten ◽  
Jaap S. Sinninghe Damsté ◽  
...  

ABSTRACT The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [13C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments.


2006 ◽  
Vol 34 (Web Server) ◽  
pp. W394-W399 ◽  
Author(s):  
T. Z. DeSantis ◽  
P. Hugenholtz ◽  
K. Keller ◽  
E. L. Brodie ◽  
N. Larsen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chuckcris P. Tenebro ◽  
Dana Joanne Von L. Trono ◽  
Carmela Vannette B. Vicera ◽  
Edna M. Sabido ◽  
Jovito A. Ysulat ◽  
...  

AbstractThe marine ecosystem has become the hotspot for finding antibiotic-producing actinomycetes across the globe. Although marine-derived actinomycetes display strain-level genomic and chemodiversity, it is unclear whether functional traits, i.e., antibiotic activity, vary in near-identical Streptomyces species. Here, we report culture-dependent isolation, antibiotic activity, phylogeny, biodiversity, abundance, and distribution of Streptomyces isolated from marine sediments across the west-central Philippines. Out of 2212 marine sediment-derived actinomycete strains isolated from 11 geographical sites, 92 strains exhibited antibacterial activities against multidrug-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The 16S rRNA and rpoB gene sequence analyses confirmed that antibiotic-producing strains belong to the genus Streptomyces, highlighting Streptomyces parvulus as the most dominant species and three possible new species. Antibiotic-producing Streptomyces strains were highly diverse in Southern Antique, and species diversity increase with marine sediment depth. Multiple strains with near-identical 16S rRNA and rpoB gene sequences displayed varying strength of antibiotic activities. The genotyping of PKS and NRPS genes revealed that closely related antibiotic-producing strains have similar BGC domains supported by their close phylogenetic proximity. These findings collectively suggest Streptomyces' intraspecies adaptive characteristics in distinct ecological niches that resulted in outcompeting other bacteria through differential antibiotic production.


2019 ◽  
Vol 14 (1) ◽  
pp. 288-298
Author(s):  
Siyue Zhao ◽  
Caiwu Li ◽  
Guo Li ◽  
Shengzhi Yang ◽  
Yingming Zhou ◽  
...  

AbstractThe giant panda (GP) was the most endangered species in China, and gut microbiota plays a vital role in host health. To determine the differences of the gut microbiota among the male, female and pregnant GPs, a comparative analysis of gut microbiota in GPs was carried out by 16S rRNA and ITS high-throughput sequencing. In 16S rRNA sequencing, 435 OTUs, 17 phyla and 182 genera were totally detected. Firmicutes (53.6%) was the predominant phylum followed by Proteobacteria (37.8%) and Fusobacteria (7.1%). Escherichia/Shigella (35.9%) was the most prevalent genus followed by Streptococcus (25.9%) and Clostridium (11.1%). In ITS sequencing, 920 OTUs, 6 phyla and 322 genera were also detected. Ascomycota (71.3%) was the predominant phylum followed by Basidiomycota (28.4%) and Zygomycota (0.15%). Purpureocillium (4.4%) was the most prevalent genus followed by Cladosporium (2.5%) and Pezicula (2.4%). Comparative analysis indicated that the male GPs harbor a higher abundance of phylum Firmicutes than female GPs with the contribution from genus Streptococcus. Meanwhile, the female GPs harbor a higher abundance of phylum Proteobacteria than male GPs with the contribution from genus Escherichia/ Shigella. In addition, the shift in bacteria from female to pregnant GPs indicated that phylum Firmicutes increased significantly with the contribution from Clostridium in the gut, which may provide an opportunity to study possible associations with low reproduction of the GPs.


2020 ◽  
Vol 81 (12) ◽  
pp. 2501-2510
Author(s):  
Jing Wang ◽  
Jiti Zhou

Abstract The exploitation of petroleum in offshore areas is becoming more prosperous due to the increasing human demand for oil. However, the effects of offshore petroleum exploitation on the microbial community in the surrounding environment are still not adequately understood. In the present study, variations in the composition, function, and antibiotic resistance of the microbial community in marine sediments adjacent to an offshore petroleum exploitation platform were analyzed by a metagenomics-based method. Significant shifts in the microbial community composition were observed in sediments impacted by offshore petroleum exploitation. Nitrosopumilales was enriched in marine sediments with the activities of offshore petroleum exploitation compared to the control sediments. The abundances of function genes involved in carbon, butanoate, methane, and fatty acid metabolism in sediment microbial communities also increased due to the offshore petroleum exploitation. Offshore petroleum exploitation resulted in the propagation of some antibiotic resistance genes (ARGs), including a multidrug transporter, smeE, and arnA, in marine sediments via horizontal gene transfer mediated by class I integrons. However, the total abundance and diversity of ARGs in marine sediments were not significantly affected by offshore petroleum exploitation. This study is the first attempt to analyze the impact of offshore petroleum exploitation on the spread of antibiotic resistance.


2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Ling Wu ◽  
Cheng Han ◽  
Guangwei Zhu ◽  
Wenhui Zhong

ABSTRACTAmmonium concentrations and temperature drive the activities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), but their effects on these microbes in eutrophic freshwater sediments are unclear. In this study, surface sediments collected from areas of Taihu Lake (China) with different degrees of eutrophication were incubated under three levels of nitrogen input and temperature, and the autotrophic growth of ammonia oxidizers was assessed using13C-labeled DNA-based stable-isotope probing (SIP), while communities were characterized using MiSeq sequencing and phylogenetic analysis of 16S rRNA genes. Nitrification rates in sediment microcosms were positively correlated with nitrogen inputs, but there was no marked association with temperature. Incubation of SIP microcosms indicated that AOA and AOBamoAgenes were labeled by13C at 20°C and 30°C in the slightly eutrophic sediment, and AOBamoAgenes were labeled to a much greater extent than AOAamoAgenes in the moderately eutrophic sediment after 56 days. Phylogenetic analysis of13C-labeled 16S rRNA genes revealed that the active AOA were mainly affiliated with theNitrosopumiluscluster, with theNitrososphaeracluster dominating in the slightly eutrophic sediment at 30°C with low ammonium input (1 mM). Active AOB communities were more sensitive to nitrogen input and temperature than were AOA communities, and they were exclusively dominated by theNitrosomonascluster, which tended to be associated withNitrosomonadaceae-like lineages.Nitrosomonassp. strain Is79A3 tended to dominate the moderately eutrophic sediment at 10°C with greater ammonium input (2.86 mM). The relative abundance responses of the major active communities to nitrogen input and temperature gradients varied, indicating niche differentiation and differences in the physiological metabolism of ammonia oxidizers that are yet to be described.IMPORTANCEBoth archaea and bacteria contribute to ammonia oxidation, which plays a central role in the global cycling of nitrogen and is important for reducing eutrophication in freshwater environments. The abundance and activities of ammonia-oxidizing archaea and bacteria in eutrophic limnic sediments vary with different ammonium concentrations or with seasonal shifts, and how the two factors affect nitrification activity, microbial roles, and active groups in different eutrophic sediments is unclear. The significance of our research is in identifying the archaeal and bacterial responses to anthropogenic activity and climate change, which will greatly enhance our understanding of the physiological metabolic differences of ammonia oxidizers.


2005 ◽  
Vol 71 (4) ◽  
pp. 2162-2169 ◽  
Author(s):  
Hideyuki Tamaki ◽  
Yuji Sekiguchi ◽  
Satoshi Hanada ◽  
Kazunori Nakamura ◽  
Nakao Nomura ◽  
...  

ABSTRACT Comparative analysis of bacterial diversity in freshwater sediment collected from a shallow eutrophic lake was performed by using 16S rRNA gene clone library and improved cultivation-based techniques. Our study demonstrated that the use of gellan gum as a gelling reagent instead of agar was more effective at increasing culturability, cultivating a diverse array of novel microbes, and reducing the gaps of the results between molecular and cultivation-based analyses.


Sign in / Sign up

Export Citation Format

Share Document