scholarly journals Coulometric response characteristics of solid contact ion-selective electrodes for divalent cations

2020 ◽  
Vol 24 (11-12) ◽  
pp. 2975-2983 ◽  
Author(s):  
Tingting Han ◽  
Zekra Mousavi ◽  
Ulriika Mattinen ◽  
Johan Bobacka

Abstract The chronoamperometric and coulometric response of solid contact ion-selective electrodes (SCISEs) for the detection of divalent cations was investigated in order to provide a more complete description of the mechanism of the recently introduced coulometric transduction method for SCISEs. The coulometric transduction method has earlier been employed only for SCISEs that were selective to monovalent ions. The SCISEs utilized poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrene sulfonate) (PSS−) as the solid contact (ion-to-electron transducer). PEDOT(PSS) was electrodeposited on glassy carbon and covered with plasticized PVC-based ion-selective membranes (ISMs) that were selective towards divalent cations (Ca2+, Pb2+). In contrast to earlier studies, the results obtained in this work show that the coulometric response for the Pb2+-SCISE was limited mainly by ion transport in the PEDOT(PSS) layer, which was not the case for the Ca2+-SCISE, nor was it observed earlier for the monovalent ions. The exceptional behavior of the Pb2+-SCISE was explored further by electrochemical impedance spectroscopy, and it was shown that the effective redox capacitance of PEDOT(PSS) was significantly higher for the Pb2+-SCISE than for the Ca2+-SCISE although the polymerization charge of PEDOT(PSS) was the same. The slow transport of Pb2+ in PEDOT(PSS) was tentatively related to complexation between Pb2+ and PEDOT(PSS).

Chemosensors ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Ville Yrjänä ◽  
Indrek Saar ◽  
Mihkel Ilisson ◽  
Sandip A. Kadam ◽  
Ivo Leito ◽  
...  

Solid-contact ion-selective electrodes with carbazole-derived ionophores were prepared. They were characterized as acetate sensors, but can be used to determine a number of carboxylates. The potentiometric response characteristics (slope, detection limit, selectivity, and pH sensitivity) of sensors prepared with different membrane compositions (ionophore, ionophore concentration, anion exchanger concentration, and plasticizer) were evaluated. The results show that for the macrocyclic ionophores, a larger cavity provided better selectivity. The sensors exhibited modest selectivity for acetate but good selectivity for benzoate. The carbazole-derived ionophores effectively decreased the interference from lipophilic anions, such as bromide, nitrate, iodide, and thiocyanate. The selectivity, detection limit, and linear range were improved by choosing a suitable plasticizer and by reducing the ionophore and anion exchanger concentrations. The influence of the electrode body’s material upon the composition of the plasticized poly(vinyl chloride) membrane, and thus also upon the sensor characteristics, was also studied. The choice of materials for the electrode body significantly affected the characteristics of the sensors.


Membranes ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 128 ◽  
Author(s):  
Yan Lyu ◽  
Shiyu Gan ◽  
Yu Bao ◽  
Lijie Zhong ◽  
Jianan Xu ◽  
...  

Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs. We review recent advances in SC-ISEs including the response mechanism (redox capacitance and electric-double-layer capacitance mechanisms) and crucial solid transducer materials (conducting polymers, carbon and other nanomaterials) and applications in wearable sensors. At the end of the review we illustrate the existing challenges and prospects for future SC-ISEs. We expect this review to provide readers with a general picture of SC-ISEs and appeal to further establishing protocols for evaluating SC-ISEs and accelerating commercial wearable sensors for clinical diagnosis and family practice.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6375
Author(s):  
Junghwan Kim ◽  
Dae Hee Kim ◽  
Jin Cheol Yang ◽  
Jae Sang Kim ◽  
Ji Ha Lee ◽  
...  

A beryllium(II)-ion-selective poly(ethylenedioxythiophene) (PEDOT) solid contact electrode comprising 9,10-dinitrobenzo-9-crown-3-ether was successfully developed. The all-solid-state contact electrode, with an oxygen-containing cation-sensing membrane combined with an electropolymerized PEDOT layer, exhibited the best response characteristics. The performance of the constructed electrode was evaluated and optimized using potentiometry, conductance measurements, constant-current chronopotentiometry, and electrochemical impedance spectroscopy (EIS). Under optimized conditions, which were found for an ion-selective membrane (ISM) composition of 3% ionophore, 30% polyvinylchloride (PVC), 64% o-nitro phenyl octyl ether (o-NPOE), and 3% sodium tetraphenylborate (NaTPB), the fabricated electrode exhibited a good performance over a wide concentration range (10−2.5–10−7.0 M) and a wide pH range of 2.0–9.0, with a Nernstian slope of 29.5 mV/D for the beryllium (II) ion and a detection limit as low as 10−7.0 M. The developed electrode shows good selectivity for the beryllium(II) ion over alkali, alkaline earth, transition, and heavy metal ions.


Author(s):  
Karolina Pietrzak ◽  
Cecylia Wardak ◽  
Szymon Malinowski

AbstractThe application of polyaniline nanofibers doped with chloride and nitrate ions (PANINFs-Cl and PANINFs-NO3) in potentiometry was described. Both kinds of nanofibers were used as an ion-to-electron transducer in ion-selective electrodes with solid contact (SCISEs). Extensive research on the properties of the nanofibers themselves (SEM, UV–Vis spectroscopy, FTIR) and the constructed electrodes (potentiometric methods, electrochemical impedance spectroscopy) has been carried out. Basic analytical parameters of electrodes containing various nanofibers contents in the ion-selective membrane and with nanofibers as an intermediate layer were determined. It was found that application of PANI nanofibers resulted in improvement of electrode performance (among others, better stability and reversibility of the electrode potential). The obtained sensors were characterized by a high slope of the calibration curve, a wide measuring range and a fast response time. Moreover, they were insensitive to change of redox potential, as well as light and the presence of oxygen in the solution, what is important from a practical point of view. They were also successfully used for nitrate determination in real environmental samples.


The Analyst ◽  
2011 ◽  
Vol 136 (16) ◽  
pp. 3252 ◽  
Author(s):  
Jean-Pierre Veder ◽  
Roland De Marco ◽  
Graeme Clarke ◽  
San Ping Jiang ◽  
Kathryn Prince ◽  
...  

Talanta ◽  
2021 ◽  
pp. 122491
Author(s):  
Marek Dębosz ◽  
József Kozma ◽  
Radosław Porada ◽  
Marcin Wieczorek ◽  
Justyna Paluch ◽  
...  

2021 ◽  
Vol 188 (5) ◽  
Author(s):  
Elena Zdrachek ◽  
Eric Bakker

AbstractThe capacitance of the ion-to-electron transducer layer helps to maintain a high potential stability of solid-contact ion-selective electrodes (SC-ISEs), and its estimation is therefore an essential step of SC-ISE characterization. The established chronopotentiometric protocol used to evaluate the capacitance of the single-walled carbon nanotube transducer layer was revised in order to obtain more reliable and better reproducible values and also to allow capacitance to be measured before membrane deposition for electrode manufacturing quality control purposes. The capacitance values measured with the revised method increased linearly with the number of deposited carbon nanotube–based transducer layers and were also found to correlate linearly before and after ion-selective membrane deposition, with correlation slopes close to 1 for nitrate-selective electrodes, to 0.7 and to 0.5 for potassium- and calcium-selective electrodes. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document