scholarly journals Exploring sensorimotor performance and user experience within a virtual reality golf putting simulator

2020 ◽  
Author(s):  
David J. Harris ◽  
Gavin Buckingham ◽  
Mark R. Wilson ◽  
Jack Brookes ◽  
Faisal Mushtaq ◽  
...  

Abstract In light of recent advances in technology, there has been growing interest in virtual reality (VR) simulations for training purposes in a range of high-performance environments, from sport to nuclear decommissioning. For a VR simulation to elicit effective transfer of training to the real-world, it must provide a sufficient level of validity, that is, it must be representative of the real-world skill. In order to develop the most effective simulations, assessments of validity should be carried out prior to implementing simulations in training. The aim of this work was to test elements of the physical fidelity, psychological fidelity and construct validity of a VR golf putting simulation. Self-report measures of task load and presence in the simulation were taken following real and simulated golf putting to assess psychological and physical fidelity. The performance of novice and expert golfers in the simulation was also compared as an initial test of construct validity. Participants reported a high degree of presence in the simulation, and there was little difference between real and virtual putting in terms of task demands. Experts performed significantly better in the simulation than novices (p = .001, d = 1.23), and there was a significant relationship between performance on the real and virtual tasks (r = .46, p = .004). The results indicated that the simulation exhibited an acceptable degree of construct validity and psychological fidelity. However, some differences between the real and virtual tasks emerged, suggesting further validation work is required.

2019 ◽  
Author(s):  
David Harris

Background: In light of recent advances in technology there has been growing interest in virtual reality (VR) simulations for training purposes in a range of high-performance environments, from sport to nuclear decommissioning. For a VR simulation to elicit effective transfer of training to the real-world, it must provide a sufficient level of validity, that is, it must be representative of the real-world skill. In order to develop the most effective simulations, assessments of validity should be carried out prior to implementing simulations in training.Objective: The aim of this work was to test elements of the physical fidelity, psychological fidelity and construct validity of a VR golf putting simulation. Method: Self-report measures of task load and presence in the simulation were taken following real and simulated golf putting to assess psychological and physical fidelity. The performance of novice and expert golfers in the simulation was also compared as an initial test of construct validity. Results: Participants reported a high degree of presence in the simulation and there was little difference between real and virtual putting in terms of task demands. Experts performed significantly better in the simulation than novices (p=.001, d=1.23) and there was a significant relationship between performance on the real and virtual tasks (r=.46, p=.004). Conclusions: The results indicated that the simulation exhibited an acceptable degree of construct validity and psychological fidelity. However, some differences between the real and virtual tasks emerged, suggesting further validation work is required.


2005 ◽  
Vol 32 (5) ◽  
pp. 777-785 ◽  
Author(s):  
Ebru Cubukcu ◽  
Jack L Nasar

Discrepanices between perceived and actual distance may affect people's spatial behavior. In a previous study Nasar, using self report of behavior, found that segmentation (measured through the number of buildings) along the route affected choice of parking garage and path from the parking garage to a destination. We recreated that same environment in a three-dimensional virtual environment and conducted a test to see whether the same factors emerged under these more controlled conditions and to see whether spatial behavior in the virtual environment accurately reflected behavior in the real environment. The results confirmed similar patterns of response in the virtual and real environments. This supports the use of virtual reality as a tool for predicting behavior in the real world and confirms increases in segmentation as related to increases in perceived distance.


2020 ◽  
Author(s):  
Paola Araiza-Alba ◽  
Therese Keane ◽  
Jennifer L Beaudry ◽  
Jordy Kaufman

In recent years, immersive virtual reality technology (IVR) has seen a substantial improvement in its quality, affordability, and ability to simulate the real world. Virtual reality in psychology can be used for three basic purposes: immersion, simulation, and a combination of both. While the psychological implementations of IVR have been predominately used with adults, this review seeks to update our knowledge about the uses and effectiveness of IVR with children. Specifically, its use as a tool for pain distraction, neuropsychological assessment, and skills training. Results showed that IVR is a useful tool when it is used either for immersive or simulative purposes (e.g., pain distraction, neuropsychological assessment), but when its use requires both simulation (of the real world) and immersion (e.g., a vivid environment), it is trickier to implement effectively.


2021 ◽  
Author(s):  
Taicheng Huang ◽  
Yiying Song ◽  
Jia Liu

Our mind can represent various objects from the physical world metaphorically into an abstract and complex high-dimensional object space, with a finite number of orthogonal axes encoding critical object features. Previous fMRI studies have shown that the middle fusiform sulcus in the ventral temporal cortex separates the real-world small-size map from the large-size map. Here we asked whether the feature of objects' real-world size constructed an axis of object space with deep convolutional neural networks (DCNNs) based on three criteria of sensitivity, independence and necessity that are impractical to be examined altogether with traditional approaches. A principal component analysis on features extracted by the DCNNs showed that objects' real-world size was encoded by an independent component, and the removal of this component significantly impaired DCNN's performance in recognizing objects. By manipulating stimuli, we found that the shape and texture of objects, rather than retina size, co-occurrence and task demands, accounted for the representation of the real-world size in the DCNNs. A follow-up fMRI experiment on humans further demonstrated that the shape, but not the texture, was used to infer the real-world size of objects in humans. In short, with both computational modeling and empirical human experiments, our study provided the first evidence supporting the feature of objects' real-world size as an axis of object space, and devised a novel paradigm for future exploring the structure of object space.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Adhe Pandhu Dwi Prayogha ◽  
Mudafiq Riyan Pratama

The purpose of virtual reality is to enable a motor and cognitive sensor activity ofsomeone in the artificial world created digitally to become imaginary, symbolic orsimulate certain aspects in the real world [1]. This technology is applied to the mediaintroduction of the solar system using the Luther method. The Luther Method consistsof 6 stages, namely Concept, Design, Material Collecting, Assembly, Testing, andDistribution. Luther method has advantages compared to other methods because thereare stages of material collecting which is an important stage in the development ofmultimedia and this Luther method can be done in parallel or can go back to theprevious stage [2]. At the Assembly stage the implementation uses the Unity Engineand Google VR SDK for Unity, the result is a virtual reality application that can displaythe solar system with 3-dimensional objects and an explanation is available on eachobject. While testing the blackbox on a variety of Android devices with differentspecifications. From the results of the application of the Luther method, it is verystructured and can run well in the development of multimedia applications, while theresults of testing, this Android-based virtual reality application cannot run on devicesthat do not have Gyroscope sensors and can run on devices with a minimumspecification of 1GB RAM will but the rendering process on 3D objects is slow.


2021 ◽  
Author(s):  
◽  
Gerrit Jacobus van Rooyen

<p>Writing for and designing a methodology for Virtual Reality (VR) can be difficult as the technology around this medium grows at a fast pace. Many game designers and directors of VR experiences still claim to make things up as they go along, with no definitive methodology for content and interaction design existing yet. So far, some guidelines have been set to help prevent discomfort, but clearly not enough has been done to look at how and why we should design for VR specifically. As VR is a very immersive medium that can allow the user to potentially use their entire body as they would in the real world to interact with an experience, we need to take precedents from real world interaction when designing VR experiences. This thesis focuses specifically on game design and content generation by looking at board and table top elements as the realworld precedent. To demonstrate my findings, I have created an experience named My VRchive. Much like a sketchbook an animator uses to save ideas for later use, My VRchive will house small experiences created from my research, into content and interaction design, in a format that can be added to and shared. At the finalisation of this thesis three experiences were created. My theory is that if more designers adopt this strategy, we can all add to this growing methodology of how to develop immersive content and interaction for VR gaming and experiences.</p>


2001 ◽  
Vol 65 (1) ◽  
pp. 78-91 ◽  
Author(s):  
Page L. Anderson ◽  
Barbara O. Rothbaum ◽  
Larry Hodges

Proceedings ◽  
2020 ◽  
Vol 47 (1) ◽  
pp. 35
Author(s):  
Wei Wang

The development of virtual reality brings an old and historic question on the difference between the real world and unreal world. In this paper, starting from the concept of representation, I argued that what we call “virtual reality” is a representation of an actual or non-actual world and the criterion of difference between the “real world” and “virtual reality” is whether we present it with the intention of using it as a representation. After that, the thesis is demonstrated again from different theories of scientific representation. Therefore, the intuitive distinction between the “real world” and “virtual reality” can be drawn on the epistemological criterion; that is to say, the virtual world is a representation while the real world is not.


2020 ◽  
Vol 33 (4-5) ◽  
pp. 479-503 ◽  
Author(s):  
Lukas Hejtmanek ◽  
Michael Starrett ◽  
Emilio Ferrer ◽  
Arne D. Ekstrom

Abstract Past studies suggest that learning a spatial environment by navigating on a desktop computer can lead to significant acquisition of spatial knowledge, although typically less than navigating in the real world. Exactly how this might differ when learning in immersive virtual interfaces that offer a rich set of multisensory cues remains to be fully explored. In this study, participants learned a campus building environment by navigating (1) the real-world version, (2) an immersive version involving an omnidirectional treadmill and head-mounted display, or (3) a version navigated on a desktop computer with a mouse and a keyboard. Participants first navigated the building in one of the three different interfaces and, afterward, navigated the real-world building to assess information transfer. To determine how well they learned the spatial layout, we measured path length, visitation errors, and pointing errors. Both virtual conditions resulted in significant learning and transfer to the real world, suggesting their efficacy in mimicking some aspects of real-world navigation. Overall, real-world navigation outperformed both immersive and desktop navigation, effects particularly pronounced early in learning. This was also suggested in a second experiment involving transfer from the real world to immersive virtual reality (VR). Analysis of effect sizes of going from virtual conditions to the real world suggested a slight advantage for immersive VR compared to desktop in terms of transfer, although at the cost of increased likelihood of dropout. Our findings suggest that virtual navigation results in significant learning, regardless of the interface, with immersive VR providing some advantage when transferring to the real world.


Sign in / Sign up

Export Citation Format

Share Document