scholarly journals A simulator for both manual and powered wheelchairs in immersive virtual reality CAVE

2021 ◽  
Author(s):  
C. Genova ◽  
E. Biffi ◽  
S. Arlati ◽  
D. F. Redaelli ◽  
A. Prini ◽  
...  

AbstractA large number of people in the world need to use a wheelchair because of different disabilities. Driving a wheelchair requires complex physical and cognitive abilities which need to be trained. Virtual training helps users acquire driving skills in a safe environment. The aim of this paper is to describe and technically validate simulation models for both manual (MW) and powered wheelchairs (PW) based on immersive virtual reality CAVE (VR). As VR system, the Gait Real-time Analysis Interactive Lab (GRAIL) was used, a CAVE equipped with a motion platform with two degrees of freedom and an optoelectronic motion capture system. A real wheelchair was positioned onto the motion platform with rear wheels free to turn in MW modality, and a commercial joystick was installed on an armrest to simulate the PW modality. Passive markers were used to track the wheel rotation, the joystick and the user hand motion. Custom D-flow applications were developed to manage virtual scene response to user actions. Overground tests, based on single wheel rotation, were performed to verify the simulation model reliability. Quantitative results demonstrated that the MW simulator kinematics was consistent with a real wheelchair overground in the absence of wheel slip and inertia (median error for MW 0.40 °, no systematic bias p = 0.943, high correlation rho > 0.999, p < 0.01). The proposed solution is flexible and adaptable to different wheelchairs, joysticks and optoelectronic systems. The main limitation is the absence of force feedback. Nevertheless, it is a reliable prototype that can be used to validate new virtual scenarios as well as for wheelchair training. The next steps include the system validation with real end users and assessment of the simulator effectiveness as a training tool.

2021 ◽  
Vol 14 (3) ◽  
pp. 1-30
Author(s):  
Vero Vanden Abeele ◽  
Brenda Schraepen ◽  
Hanne Huygelier ◽  
Celine Gillebert ◽  
Kathrin Gerling ◽  
...  

Despite the proliferation of research on immersive virtual reality (IVR) technologies for older adults, comprehensive guidelines on designing immersive and engaging VR for older adults remain sparse. Therefore, we first compounded 67 guidelines based on published literature. Next, to empirically ground these design recommendations, we provided 37 older adults of diverse ages, education levels, and cognitive abilities with a first VR experience. Analyzing interviews with the 37 older adults via the Laddering method, we found that they generally reported positive experiences with their first VR exposure. With these deepened insights, we reflect on, nuance, and contextualize existing design guidelines, and formulate points to bear in mind when designing accessible and engaging VR experiences for older persons.


2021 ◽  
Vol 11 (19) ◽  
pp. 9341
Author(s):  
Andria Shimi ◽  
Vanessa Tsestou ◽  
Marios Hadjiaros ◽  
Kleanthis Neokleous ◽  
Marios Avraamides

Physical abilities are essential to goalkeepers in soccer but the involved cognitive abilities for these players have only recently become the focus of extensive research. In this study, we investigated the role of different aspects of attention in a basic goalkeeping task in soccer. One hundred participants assumed the role of a goalkeeper in immersive virtual reality (VR) and carried out a task that entailed blocking balls shot towards their goal. In addition, they carried out two computerized tasks each assessing different attentional abilities: the Attention Network Test provided scores for three well-established networks of attention, namely the alerting, the orienting, and the executive control. The Whack-a-Mole task evaluated inhibitory control, by measuring performance in a classic Go/No-Go task and tapping on response inhibition. A regression analysis revealed that all three attention network scores contributed to performance in the VR goalkeeping task. Furthermore, performance in the Whack-a-Mole task correlated significantly with performance in the VR goalkeeping task. Overall, findings confirm that cognitive skills relating to attention play a critical role in the efficient execution of soccer-specific tasks. These findings have important implications for the training of cognitive skills in sports.


2021 ◽  
Author(s):  
Andria Shimi ◽  
Vanessa Tsestou ◽  
Marios Hatziaros ◽  
Kleanthis Neokleous ◽  
Marios N Avraamides

Soccer is one of the most popular sports and goalkeepers are central to a team’s winning. Physical abilities are essential to goalkeepers but the involved cognitive abilities for these players are understudied and not well understood. In this study, we investigated the role of different aspects of attention in a goalkeeping task in soccer. Participants assumed the role of a goalkeeper in immersive Virtual Reality and carried out a task that entailed blocking balls shot towards their goal. In addition, they carried out two computerized tasks each assessing different attentional abilities: the Attention Network Test provided scores for three well-established networks of attention, namely the alerting, the orienting, and the executive control. The Whack-a-Mole task evaluated inhibitory control, by measuring performance in a classic Go/No-Go task and tapping on response inhibition. Results revealed that all three attention network scores predicted performance in the VR goalkeeping task. Furthermore, performance in the Whack-a-Mole task correlated significantly with performance in the VR goalkeeping task. Overall, findings confirm that cognitive skills relating to attention play a critical role in the efficient execution of soccer-specific tasks. These findings have important implications for the training of cognitive skills in sports.


1993 ◽  
Vol 5 (2) ◽  
pp. 178-182 ◽  
Author(s):  
Grigore C. Burdea ◽  
◽  
Noshir A. Langrana ◽  

Virtual force feedback prototypes have been developed in the last couple of years. Their number of degrees of freedom and range of motion are limited by present (bulky) actuator technology. Lessons from these first prototypes point to possible solutions in the future. Several applications of virtual reality with force feedback are then described.


Author(s):  
Manuel Rodrigues Quintas ◽  
Maria Teresa Restivo ◽  
José Rodrigues ◽  
Pedro Ubaldo

The concept and the use of haptic devices need to be disseminated and they should become familiar among young people. At present haptics are used in many everyday tasks in different fields. Additionally, their use in interaction with virtual reality applications simulating real systems sense of touch will increase the usersâ?? realism and immersion and, consequently, they will contribute to improve the intrinsic knowledge to the simulationsâ?? goals. However, haptics are associated with expensive equipment and usually they offer several degrees of freedom. The objective of this work is to make their cost not much more expensive than a â??specialâ? mouse by offering a low cost solution with just one degree of freedom (1DOF) useful in many simple cases. Additionally, it is also an objective of this work the development of simple virtual reality systems requiring interactions only requiring one degree of freedom. A low cost, single-axis force-feedback haptic device of 1 degree of freedom has been developed. For evaluating the interest of this prototype a â??Spring Constantâ? application was built and used as a demonstrator. The complete system - the haptic interacting with the â??Spring Constantâ? - will be described in the present work.


2009 ◽  
Vol 6 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Antonio Frisoli ◽  
Fabio Salsedo ◽  
Massimo Bergamasco ◽  
Bruno Rossi ◽  
Maria C. Carboncini

This paper presents the design and the clinical validation of an upper-limb force-feedback exoskeleton, the L-EXOS, for robotic-assisted rehabilitation in virtual reality (VR). The L-EXOS is a five degrees of freedom exoskeleton with a wearable structure and anthropomorphic workspace that can cover the full range of motion of human arm. A specific VR application focused on the reaching task was developed and evaluated on a group of eight post-stroke patients, to assess the efficacy of the system for the rehabilitation of upper limb. The evaluation showed a significant reduction of the performance error in the reaching task (pairedt-test, p < 0.02)


Author(s):  
C-F Hsu ◽  
C-T Lin ◽  
T-Y Huang ◽  
K-Y Young

The objective of this paper is to develop a multipurpose virtual-reality (VR) dynamic simulation system to meet the requirements of public security in the training of human operators. In this way, the operator can feel that he or she is controlling a real machine or vehicle to achieve the objective of real training. The developed VR dynamical simulation system in this paper mainly consists of three elements: a six-degree-of-freedom motion platform (Stewart platform), a force-reflection joystick, and an interactive VR scene. In the developed VR dynamic simulation system, the operator could sit on a Stewart platform to feel the velocity and orientation of motion, and could handle a force-reflection joystick to transfer the commands to the VR scene. Then, the operator will receive the force feedback from the Stewart platform and the joystick. Finally, a flight simulation scene is applied to illustrate the effectiveness of the developed VR dynamical simulation system. Experimental results demonstrate that the evaluation of the VR dynamical simulation system is comparatively good.


2020 ◽  
Vol 11 ◽  
Author(s):  
Emilia Biffi ◽  
Chiara Gagliardi ◽  
Cristina Maghini ◽  
Chiara Genova ◽  
Daniele Panzeri ◽  
...  

Purpose: Human navigation skills are essential for everyday life and rely on several cognitive abilities, among which visual-spatial competences that are impaired in subjects with cerebral palsy (CP). In this work, we proposed navigation tasks in immersive virtual reality (IVR) to 15 children with CP and 13 typically developing (TD) peers in order to assess the individual navigation strategies and their modifiability in a situation resembling real life.Methods: We developed and adapted to IVR an application based on a 5-way maze in a playground that was to be navigated to find a reward. The learning process, navigation strategies, and adaptation to changes were compared between participants with CP and their TD peers and correlated with visual-spatial abilities and cognitive competences.Results: Most participants with CP needed more attempts than TD participants to become proficient in navigation. Furthermore, the learning phase was correlated to visual-spatial memory but not with cognitive competences. Interestingly, navigation skills were comparable between groups after stabilization. While TD participants mainly relied on allocentric strategies based on environmental cues, egocentric (self-centered) strategies based on body motion prevailed in participants with CP. Furthermore, participants with CP had more difficulties in modifying their navigation strategies, caused by difficulties in executive processes beyond the visual-perceptual impairment, with an inefficient shift between implicit and explicit competences.Conclusions: The navigation abilities in participants with CP seem to be different from their TD peers in terms of learning and adaptation to new conditions; this could deeply affect their everyday life and ultimately participation and inclusion. A regular assessing and focused rehabilitative plans could help to better navigate the environment and affect self-perception.


Sign in / Sign up

Export Citation Format

Share Document