Influence of particle size distribution, test time, and moisture content on sandy stratum LCPC abrasivity test results

2020 ◽  
Vol 80 (1) ◽  
pp. 611-625 ◽  
Author(s):  
Zhengyang Sun ◽  
Zhiyong Yang ◽  
Yusheng Jiang ◽  
Hongji Gao ◽  
Kuanda Fang ◽  
...  
Author(s):  
I. L. Whyte

AbstractThe origins and development of the U100 (U4) thick-walled open-drive sampler are reviewed. The requirements of CP 2001 and BS 5930 are examined in relation to sample quality, and these are shown to be too favourable. Causes of sample disturbance are considered, particularly those due to volume changes, and shown to depend on moisture content, plasticity and particle size distribution. Quality classes possible with conventional U100 samples are suggested, and Classes 3 or 4 are to be generally expected. Class 1 samples are improbable. It is recommended that a general purpose sampler such as the U100 should have a maximum inside clearance of 1% and not ‘about 1%’ as recommended in BS 5930.


1994 ◽  
Vol 74 (2) ◽  
pp. 383-385 ◽  
Author(s):  
R. Soofi-Siawash ◽  
G. W. Mathison

Two studies were conducted to assess the possibility of using particle size distribution following grinding as a routine procedure of forage evaluation. It was concluded that although differences in particle size distribution could be detected when different feeds were ground, it would be difficult to standardize the technique since particle size distributions were influenced by type of mill used for grinding, particle size of forage before grinding, and moisture content of the forage. Key words: Forages, grinding, particle size, moisture, mill


Author(s):  
Jahanzaib Israr ◽  
Buddhima Indraratna ◽  
Cholachat Rujikiatkamjorn

Internal erosion is a phenomenon whereby the filtrates under the influence of significant seepage forces accompany the finer fraction from potential internally unstable filters (e.g. broadly- and gap-graded soil), occasionally rendering them ineffective. The filter assessment for internal erosion or instability potential is emphasized through particle size distribution based geometrical criteria ignoring the effect of compaction. In this study, the results of hydraulic gradient controlled internal erosion tests conducted over a wide range of compacted sand-gravel mixtures were used to analyse some of the available geometrical criteria, which interestingly showed partial success in assessing the filter’s internal erosion potential. It was revealed that the occurrence of internal erosion is a combined function of particle size distribution and the relative density of soils that had been ignored in many of the existing criteria. A comparison between the assessments obtained from some of the particle size based criteria and that from a constriction size based technique was reported for a large body of published data. It was observed that the latter criterion, which incorporates the effects of both particle size distribution and relative density of soils in tandem, could assess the reported test results with higher accuracy.


2015 ◽  
Vol 25 (6) ◽  
pp. 774-784 ◽  
Author(s):  
Nikolaos Ntoulas ◽  
Panayiotis A. Nektarios ◽  
Thomais-Evelina Kapsali ◽  
Maria-Pinelopi Kaltsidi ◽  
Liebao Han ◽  
...  

Several locally available materials were tested to create an optimized growth substrate for arid and semiarid Mediterranean extensive green roofs. The study involved a four-step screening procedure. At the first step, 10 different materials were tested including pumice (Pum), crushed tiles grade 1–2 mm (T1–2), 2–4 mm (T2–4), 5–8 mm (T5–8), 5–16 mm (T5–16), and 4–22 mm (T4–22); crushed bricks of either 2–4 mm (B2–4) or 2–8 mm (B2–8); a thermally treated clay (TC); and zeolite (Zeo). All materials were tested for their particle size distribution, pH, and electrical conductivity (EC). The results were compared for compliance with existing guidelines for extensive green roof construction. From the first step, the most promising materials were shown to include Pum, Zeo, T5–8, T5–16, and TC, which were then used at the second stage to develop mixtures between them. Tests at the second stage included particle size distribution and moisture potential curves. Pumice mixed with TC provided the best compliance with existing guidelines in relation to particle size distribution, and it significantly increased moisture content compared with the mixes of Pum with T5–8 and T5–16. As a result, from the second screening step, the best performing substrate was Pum mixed with TC and Zeo. The third stage involved the selection of the most appropriate organic amendment of the growing substrate. Three composts having different composition and sphagnum peat were analyzed for their chemical and physical characteristics. The composts were a) garden waste compost (GWC), b) olive (Olea europaea L.) mill waste compost (OMWC), and c) grape (Vitis vinifera L.) marc compost (GMC). It was found that the peat-amended substrate retained increased moisture content compared with the compost-amended substrates. The fourth and final stage involved the evaluation of the environmental impact of the final mix with the four different organic amendments based on their first flush nitrate nitrogen (NO3−-N) leaching potential. It was found that GWC and OMWC exhibited increased NO3−-N leaching that initially reached 160 and 92 mg·L−1 of NO3−-N for OMWC and GWC, respectively. By contrast, peat and GMC exhibited minimal NO3−-N leaching that was slightly above the maximum contaminant level of 10 mg·L−1 of NO3−-N (17.3 and 14.6 mg·L−1 of NO3−N for peat and GMC, respectively). The latter was very brief and lasted only for the first 100 and 50 mL of effluent volume for peat and GMC, respectively.


2014 ◽  
Vol 40 (4) ◽  
pp. 299-305 ◽  
Author(s):  
Kenichi Arima ◽  
Isao Torii ◽  
Ryuhei Takashima ◽  
Tetsuya Sawatsubashi ◽  
Masaaki Kinoshita ◽  
...  

2020 ◽  
Vol 56 (1) ◽  
pp. 37-46
Author(s):  
P. Choudhary ◽  
T. Maloo ◽  
H. Parida ◽  
P. Khatri ◽  
B. Deo ◽  
...  

Production of sponge iron requires iron ore, coal, and dolomite. The quality of sponge iron is affected by particle size variation and moisture content of the feed materials. In the present work, image processing was used to detect both particle size and moisture variation of the feed materials on an online basis. Noise and signal irregularities in images were removed by image analysis through MATLAB. Continuous (online, every 30 minutes) images were taken over a coal bed which was moving on a conveyor belt. It was a challenge to determine the particle size distribution and surface moisture of coal online. The distribution of reflectivity of coal in the image varied according to the moisture content and particle size. It affected the intensity information of the image which was then used to predict the surface moisture content of the coal. The method is now being used successfully in a processing plant.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tae-Min Oh ◽  
Gun-Wook Joo ◽  
Yohan Cha ◽  
Gye-Chun Cho

Abrasive waterjet cutting technology has come back into use in the field of rock excavation (such as for tunneling) due to the need for precision construction with low vibration. Because the abrasive particles play an important role in efficient erosion during the cutting process, the abrasive characteristics strongly affect the rock cutting performance. In this study, rock cutting tests were performed with five different coarse (40 mesh) garnets to explore the effect of the abrasive feed rate, physical properties, and particle size distribution on rock cutting performance. In addition, garnet particle disintegration was investigated with garnet characteristics for the abrasive waterjet. The test results indicate that the particle size distribution, garnet purity, specific gravity, and hardness are the most important parameters for rock cutting performance. This study offers better understanding of coarse garnet performance and efficiency according to the garnet characteristics. This should provide assistance in selection of the garnet needed to achieve the desired performance for hard rock cutting.


Author(s):  
Chisimkwuo John ◽  
Chukwuemeka O. Omekara

Tobacco manufacturers see the tobacco moisture content as one of the determining factors in the quality of the finished tobacco product. During primary processing stage, the Particle Size Distribution (PSD) of the cut tobacco is a good measure of the tobacco moisture content. This paper presents statistical analyses of a two month PSD data using graphical techniques from noteworthy statistical multidimensional scaling (MDS) approaches in characterizing the tobacco moisture quality ratio. At the end, the evaluation within the investigated months fosters an indicative process audit, control and predictive monitoring that is capable of providing valuable impacts to future production.


Sign in / Sign up

Export Citation Format

Share Document