Correction to: Fluoroquinolone resistance contributing mechanisms and genotypes of ciprofloxacin‑ unsusceptible Pseudomonas aeruginosa strains in Iran: emergence of isolates carrying qnr/aac(6)‑Ib genes

Author(s):  
Mahsa Nabilou ◽  
Laleh Babaeekhou ◽  
Maryam Ghane
2015 ◽  
Vol 59 (6) ◽  
pp. 3059-3065 ◽  
Author(s):  
C. Pitart ◽  
F. Marco ◽  
T. A. Keating ◽  
W. W. Nichols ◽  
J. Vila

ABSTRACTCeftazidime-avibactam and comparator antibiotics were tested by the broth microdilution method against 200Enterobacteriaceaeand 25Pseudomonas aeruginosastrains resistant to fluoroquinolones (including strains with the extended-spectrum β-lactamase [ESBL] phenotype and ceftazidime-resistant strains) collected from our institution. The MICs and mechanisms of resistance to fluoroquinolone were also studied. Ninety-nine percent of fluoroquinolone-resistantEnterobacteriaceaestrains were inhibited at a ceftazidime-avibactam MIC of ≤4 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference). Ceftazidime-avibactam was very active against ESBLEscherichia coli(MIC90of 0.25 mg/liter), ESBLKlebsiella pneumoniae(MIC90of 0.5 mg/liter), ceftazidime-resistant AmpC-producing species (MIC90of 1 mg/liter), non-ESBLE. coli(MIC90of ≤0.125 mg/liter), non-ESBLK. pneumoniae(MIC90of 0.25 mg/liter), and ceftazidime-nonresistant AmpC-producing species (MIC90of ≤0.5 mg/liter). Ninety-six percent of fluoroquinolone-resistantP. aeruginosastrains were inhibited at a ceftazidime-avibactam MIC of ≤8 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference), with a MIC90of 8 mg/liter. Additionally, fluoroquinolone-resistant mutants from each species tested were obtainedin vitrofrom two strains, one susceptible to ceftazidime and the other a β-lactamase producer with a high MIC against ceftazidime but susceptible to ceftazidime-avibactam. Thereby, the impact of fluoroquinolone resistance on the activity of ceftazidime-avibactam could be assessed. The MIC90values of ceftazidime-avibactam for the fluoroquinolone-resistant mutant strains ofEnterobacteriaceaeandP. aeruginosawere ≤4 mg/liter and ≤8 mg/liter, respectively. We conclude that the presence of fluoroquinolone resistance does not affectEnterobacteriaceaeandP. aeruginosasusceptibility to ceftazidime-avibactam; that is, there is no cross-resistance.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S690-S691
Author(s):  
Haley Appaneal ◽  
Aisling Caffrey ◽  
Stephanie Hughes ◽  
Vrishali Lopes ◽  
Robin L Jump ◽  
...  

Abstract Background Antibiotic resistance is a global public health crisis, with antibiotic overuse contributing to selection pressure, and thus driving antibiotic resistance. Strategies to reduce antibiotic overuse may slow the development of resistance, but large-scale studies assessing trends in antibiotic use and resistance among nursing homes at the national level are limited. We describe trends in antibiotic use and resistance nationally among Veterans Affairs (VA) Community Living Centers (CLCs). Methods We assessed antibiotic use and microbiological cultures among VA CLC residents from 2011 to 2017. Antibiotics were grouped into eight drug classes and annual days of antibiotic therapy per 1,000 bed-days were calculated. Facility-weighted annual antibiotic resistance rates were calculated. Joinpoint Software was used for regression analyses of trends over time and to estimate annual average percent changes (AAPC) with 95% confidence intervals (CI). Results Over 7 years and among 146 CLCs, several significant trends in decreasing antibiotic use and corresponding reductions in resistance were identified. Fluoroquinolone use decreased by 9.9% annually (95% CI −11.6 to −8.2%) and fluoroquinolone resistance decreased by 2.3% per year for Escherichia coli, 5.1% for Klebsiella spp., 1.8% for Proteus mirabilis, 4.9% for Pseudomonas aeruginosa, 12.6% for Enterobacter spp., and 3.2% for Enterococcus spp. Anti-pseudomonal penicillin use decreased by 6.6% annually (95% CI −10.6 to −2.4%) and anti-pseudomonal penicillin resistance rates decreased each year by 7.9% for Escherichia coli, 8.9% for Klebsiella spp., 15.2% for Proteus mirabilis and 4.2% for Pseudomonas aeruginosa. Anti-staphylococcal penicillin use decreased by 5.4% annually (95% CI −10.0 to −0.5%) and resistance in Staphylococcus aureus decreased 1.7% per year. Conclusion Nationally among VA CLCs, we observed significant reductions in the use of several classes of antibiotics with corresponding reductions in antibiotic resistance, including an impressive decline in fluoroquinolone use and corresponding decreases in fluoroquinolone resistance among six organisms. Future research should assess whether reductions in antibiotic use predict later reductions in antibiotic resistance and improvements in resident outcomes. Disclosures All authors: No reported disclosures.


Author(s):  
Chris Kenyon

It is unclear how important it is to reduce fluoroquinolone consumption in the general population to prevent the spread of fluoroquinolone resistance in Neisseria gonorrhoeae (bystander selection). Methods We assessed bystander selection by using Spearman’s correlation to assess if the country-level prevalence of fluoroquinolone resistance in N. gonorrhoeae was correlated with the prevalence of fluoroquinolone resistance in four other gram-negative species - Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Results Fluoroquinolone resistance in N. gonorrhoeae was positively associated with homologous resistance in all 4 species - A. baumanii. (ρ=0.61, P=0.0003, E. coli (ρ=0.67, P<0.0001), K. pneumoniae (ρ=0.52, P=0.0004) and P. aeruginosa (ρ=0.40, P=0.0206). Positive associations were also found between the national prevalence of fluoroquinolone resistance and fluoroquinolone consumption in the general population in the preceding year for 4 of the 5 species. Conclusions Gonococcal fluoroquinolone resistance can be productively viewed as being part of a syndemic of fluoroquinolone resistance. Strengthening antimicrobial stewardship programs may help retard the spread of fluoroquinolone resistance in N. gonorrhoeae.


2020 ◽  
Author(s):  
Mahjabeen Khan ◽  
Stephen Summers ◽  
Scott A Rice ◽  
Fiona Stapleton ◽  
Mark D P Willcox ◽  
...  

AbstractFluroquinolones are widely used as an empirical therapy for pseudomonal ocular infections. Based on increasing reports on acquired fluroquinolone resistance genes in clinical isolates of Pseudomonas aeruginosa, we investigated 33 strains of P. aeruginosa isolated from the cornea of microbial keratitis patients in India and Australia between 1992 and 2018 to understand the prevalence of acquired fluroquinolone resistance genes in ocular isolates and to assess whether the possession of those genes was associated with fluoroquinolone susceptibility. We obtained the whole genome sequence of 33 isolates using Illumina MiSeq platform and investigated the prevalence of two fluoroquinolone resistance genes crpP and qnrVC1. To examine the associated mobile genetic elements of qnrVC1 positive strains, we obtained long read sequences using Oxford Nanopore MinION and performed hybrid assembly to combine long reads with Illumina short sequence reads. We further assessed mutations in QRDRs and antibiotic susceptibilities to ciprofloxacin, levofloxacin and moxifloxacin to examine the association between resistance genes and phenotype. Twenty strains possessed crpP in genetic islands characterised by possession of integrative conjugative elements. The qnrVC1 gene was carried by four isolates on class I integrons and Tn3 transposons along with aminoglycoside and beta-lactam resistance genes. We did not observe any evidence of plasmids carrying fluroquinolone resistance genes. Resistance to fluroquinolones was observed in those strains which possessed crpP, qnrVC1 and that had QRDRs mutations. The presence of crpP was not a sole cause of fluroquinolone resistance.


2006 ◽  
Vol 52 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Marc H. Scheetz ◽  
Maureen K. Bolon ◽  
Kimberly K. Scarsi ◽  
Michael A. Fotis ◽  
Michael J. Postelnick

2005 ◽  
Vol 49 (2) ◽  
pp. 565-570 ◽  
Author(s):  
Jane Kriengkauykiat ◽  
Edith Porter ◽  
Olga Lomovskaya ◽  
Annie Wong-Beringer

ABSTRACT Fluoroquinolone-resistance in Pseudomonas aeruginosa may be due to efflux pump overexpression (EPO) and/or target mutations. EPO can result in multidrug resistance (MDR) due to broad substrate specificity of the pumps. MC-04,124, an efflux pump inhibitor (EPI) shown to significantly potentiate activity of levofloxacin in P. aeruginosa, was used to examine the prevalence of EPO in clinical isolates. MICs were determined for ciprofloxacin, levofloxacin, moxifloxacin, and gatifloxacin with or without EPI and for other antipseudomonal agents by using broth microdilution against P. aeruginosa isolates from adults (n = 119) and children (n = 24). The prevalence of the EPO phenotype (≥8-fold MIC decrease when tested with EPI) was compared among subgroups with different resistance profiles. The EPO phenotype was more prevalent among levofloxacin-resistant than levofloxacin-sensitive strains (61%, 48/79 versus 9%, 6/64). EPO was present in 60% of fluoroquinolone-resistant strains without cross-resistance, while it was present at variable frequencies among strains with cross-resistance to other agents: piperacillin-tazobactam (86%), ceftazidime (76%), cefepime (65%), imipenem (56%), gentamicin (55%), tobramycin (48%), and amikacin (27%). The magnitude of MIC decrease with an EPI paralleled the frequency of which the EPO phenotype was observed in different subgroups. EPI reduced the levofloxacin MIC by as much as 16-fold in eight strains for which MICs were 128 μg/ml. Efflux-mediated resistance appears to contribute significantly to fluoroquinolone resistance and MDR in P. aeruginosa. Our data support the fact that increased fluoroquinolone usage can negatively impact susceptibility of P. aeruginosa to multiple classes of antipseudomonal agents.


Sign in / Sign up

Export Citation Format

Share Document