Protoplast Preparation from Laminaria japonica with Recombinant Alginate Lyase and Cellulase

2010 ◽  
Vol 13 (2) ◽  
pp. 256-263 ◽  
Author(s):  
Akira Inoue ◽  
Chieco Mashino ◽  
Teina Kodama ◽  
Takao Ojima
2020 ◽  
Vol 311 ◽  
pp. 123548
Author(s):  
Chixiang Sun ◽  
Jianli Zhou ◽  
Guoliang Duan ◽  
Xiaobin Yu

2020 ◽  
Vol 11 (3) ◽  
pp. 2395-2405 ◽  
Author(s):  
Nannan Li ◽  
Xiaodan Fu ◽  
Mengshi Xiao ◽  
Xinyi Wei ◽  
Min Yang ◽  
...  

Here, we describe a method combining thermo-acid pretreatment and alginate lyase hydrolysis to prepare a low-molecular-weight polysaccharide from the seaweed Laminaria japonica (SP)and its hypolipidemic effect in mice.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 188
Author(s):  
Antia G. Pereira ◽  
Paz Otero ◽  
Javier Echave ◽  
Anxo Carreira-Casais ◽  
Franklin Chamorro ◽  
...  

Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and β-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll’s bioavailability.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 352
Author(s):  
Seiichiro Aoe ◽  
Chiemi Yamanaka ◽  
Hirofumi Ohtoshi ◽  
Fumiko Nakamura ◽  
Suguru Fujiwara

To investigate whether supplementation with iodine-reduced kelp (Laminaria japonica) powder decreases body fat composition in overweight Japanese subjects, a randomized, double-blind, placebo-controlled intervention study was conducted in 50 Japanese subjects with body mass index (BMI) ≥25 and <30 kg/m2. Subjects were randomly assigned to consume thirty tablets/d (10 tablets orally, 3 times/d) containing either iodine-reduced kelp powder (test, 6 g kelp powder corresponding to 3 g alginate/d) or kelp-free powder (placebo) for 8 weeks. Anthropometric measurements, blood lipids, and serum thyroid hormone levels were obtained before and after the trial. Body fat percentage was significantly decreased in male subjects from the test group compared with the placebo group. The same tendency was observed for body weight (p = 0.065) and BMI (p = 0.072) in male subjects. No significant changes in anthropometric measurements or visceral fat area were observed in female subjects. Serum thyroid hormone concentrations did not increase after 1.03 mg/d of iodine supplementation through kelp intake. The intake of iodine-reduced kelp powder led to significant and safe reductions in body fat percentage in overweight male subjects. The consumption of kelp high in alginate may contribute to preventing obesity without influencing thyroid function in Japanese subjects with a relatively high intake of iodine from seaweed.


2009 ◽  
Vol 11 (5) ◽  
pp. 619-626 ◽  
Author(s):  
Guanglei Liu ◽  
Lixi Yue ◽  
Zhe Chi ◽  
Wengong Yu ◽  
Zhenming Chi ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 80
Author(s):  
Bo Pilgaard ◽  
Marlene Vuillemin ◽  
Jesper Holck ◽  
Casper Wilkens ◽  
Anne S. Meyer

Alginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.2.x), categorized as polysaccharide lyases (PLs) belonging to 12 different PL families. Until now, the vast majority of the alginate lyases have been found in bacteria. We report here the first extensive characterization of four alginate lyases from a marine fungus, the ascomycete Paradendryphiella salina, a known saprophyte of seaweeds. We have identified four polysaccharide lyase encoding genes bioinformatically in P. salina, one PL8 (PsMan8A), and three PL7 alginate lyases (PsAlg7A, -B, and -C). PsMan8A was demonstrated to exert exo-action on polymannuronic acid, and no action on alginate, indicating that this enzyme is most likely an exo-acting polymannuronic acid specific lyase. This enzyme is the first alginate lyase assigned to PL8 and polymannuronic acid thus represents a new substrate specificity in this family. The PL7 lyases (PsAlg7A, -B, and -C) were found to be endo-acting alginate lyases with different activity optima, substrate affinities, and product profiles. PsAlg7A and PsMan8A showed a clear synergistic action for the complete depolymerization of polyM at pH 5. PsAlg7A depolymerized polyM to mainly DP5 and DP3 oligomers and PsMan8A to dimers and monosaccharides. PsAlg7B and PsAlg7C showed substrate affinities towards both polyM and polyG at pH 8, depolymerizing both substrates to DP9-DP2 oligomers. The findings elucidate how P. salina accomplishes alginate depolymerization and provide insight into an efficient synergistic cooperation that may provide a new foundation for enzyme selection for alginate degradation in seaweed bioprocessing.


2014 ◽  
Vol 239 (12) ◽  
pp. 1663-1670 ◽  
Author(s):  
Xibei Jia ◽  
Juan Yang ◽  
Zhi Wang ◽  
Ruichan Liu ◽  
Rujuan Xie

Sign in / Sign up

Export Citation Format

Share Document