scholarly journals Enzymatic biofilm destabilisation to support mechanical cleansing of inserted dental implant surfaces: an in-vitro pilot study

Odontology ◽  
2021 ◽  
Author(s):  
Rutger Matthes ◽  
Lukasz Jablonowski ◽  
Birte Holtfreter ◽  
Christiane Pink ◽  
Thomas Kocher

AbstractPeri-implantitis is caused by microbial contamination and biofilm formation on the implant surface. To achieve re-osseointegration, the microbes must be completely removed from the surface. Adjunctive to mechanical cleaning, chemical treatment with enzymes or other substances could optimise the treatment outcome. Therefore, we investigated the efficacy of different enzymes, a surfactant, and a chelator in destabilising dental polymicrobial biofilm. The biofilm destabilising effect of the glycosidases α-amylase, dextranase, DispersinB®, and lysozyme, as well as the proteinase subtilisin A, and the nuclease Benzonase®, the chelator EDTA, and the surfactant cocamidopropyl betaine were investigated on biofilms, inoculated with plaque on rough titanium discs. The test and the control solutions were incubated for 15 min at 36 °C on biofilms, and loosened biofilm mass was removed by shear stress with a shaker. Fluorescence-stained biofilms were microscopically analysed. Acceptable cell tolerability concentrations of test substances were determined by the MTT (tetrazolium dye) assay on the MG-63 cell line. A statistically significant biofilm destabilising effect of 10% was shown with lysozyme (2500 µg/ml).

2020 ◽  
Author(s):  
Mohamed Assadawy ◽  
Eman Helmy

Abstract Background: Biofilm formation on implants is the primary factor for implant loss. Porphyromonas gingivalis is a highly virulent pathogen that contributes to the development of periodontal disease and implant failure.Objectives: The goals of this study are to investigate the formation of P. gingivalis biofilms on nanoselenium-coated implants in vitro and the potential use of nanoselenium for peri-implantitis treatment.Materials and methods: Porphyromonas gingivalis ATCC 33277 was cultured to obtain an in vitro mature biofilm on the surface of the Hexacone implant system. The fixture was added into an Eppendorf tube and placed in a sterile air laminar flow cabinet. An automatic machine learning utility was used to calculate the biofilm size on the implant surface from SEM images, and the Trainable Weka Segmentation plugin in Fiji software was employed.Results The SeNPs affected the P. gingivalis biofilm (the effect size was 80.17%), and the difference was highly significant (p 0.000).Conclusion: The use of SeNPs as dental implant coatings presented promising anti-P. gingivalis biofilm activity.Clinical relevance:: The development of a dental implant surface treatment with efficient antibacterial properties, especially against the most virulent pathogens, has not yet been established.Principal findings: Nanoselenium particles as an implant surface coating prevented Porphyromonas gingivalis biofilm formation to a striking extent.Practical implication: Nanoparticles could provide a novel state-of-the-art therapeutic approach for Porphyromonas gingivalis (P. gingivalis biofilm on dental implants)


2020 ◽  
Author(s):  
Erica Tambone ◽  
Emiliana Bonomi ◽  
Paolo Ghensi ◽  
Devid Maniglio ◽  
Chiara Ceresa ◽  
...  

Abstract Background: Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new of anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. Methods: R89BS was physically adsorbed on titanium discs (TDs) and the ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile cells was also performed by scanning electron microscopy. Results: R89BS-coated discs showed no cytotoxic effects on normal lung fibroblasts (MRC5). TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 98%, 49% and 10% and of S. epidermidis by 53%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 75% for S. epidermidis at 24 h. Conclusions: R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Pedro Paulo Cardoso Pita ◽  
José Augusto Rodrigues ◽  
Claudia Ota-Tsuzuki ◽  
Tatiane Ferreira Miato ◽  
Elton G. Zenobio ◽  
...  

The establishment of the subgingival microbiota is dependent on successive colonization of the implant surface by bacterial species. Different implant surface topographies could influence the bacterial adsorption and therefore jeopardize the implant survival. This study evaluated the biofilm formation capacity of five oral streptococci species on two titanium surface topographies.In vitrobiofilm formation was induced on 30 titanium discs divided in two groups: sandblasted acid-etched (SAE-n=15) and as-machined (M-n=15) surface. The specimens were immersed in sterilized whole human unstimulated saliva and then in fresh bacterial culture with five oral streptococci species:Streptococcus sanguinis,Streptococcus salivarius,Streptococcus mutans,Streptococcus sobrinus, andStreptococcus cricetus. The specimens were fixed and stained and the adsorbed dye was measured. Surface characterization was performed by atomic force and scanning electron microscopy. Surface and microbiologic data were analyzed by Student’st-test and two-way ANOVA, respectively (P<0.05).S. cricetus,S. mutans,andS. sobrinusexhibited higher biofilm formation and no differences were observed between surfaces analyzed within each species (P>0.05).S. sanguinisexhibited similar behavior to form biofilm on both implant surface topographies, whileS. salivariusshowed the lowest ability to form biofilm. It was concluded that biofilm formation on titanium surfaces depends on surface topography and species involved.


2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Tripti Thapa Gupta ◽  
Niraj K. Gupta ◽  
Matthew J. Pestrak ◽  
Devendra H. Dusane ◽  
Janette M. Harro ◽  
...  

ABSTRACT Periprosthetic joint infection (PJI) occurring after artificial joint replacement is a major clinical issue requiring multiple surgeries and antibiotic interventions. Staphylococcus aureus is the bacterium most commonly responsible for PJI. Recent in vitro research has shown that staphylococcal strains rapidly form aggregates in the presence of synovial fluid (SF). We hypothesize that these aggregates provide early protection to bacteria entering the wound site, allowing them time to attach to the implant surface, leading to biofilm formation. Thus, understanding the attachment kinetics of these aggregates is critical in understanding their adhesion to various biomaterial surfaces. In this study, the number, size, and surface area coverage of aggregates as well as of single cells of S. aureus were quantified under various conditions on different orthopedic materials relevant to orthopedic surgery: stainless steel (316L), titanium (Ti), hydroxyapatite (HA), and polyethylene (PE). It was observed that, regardless of the material type, SF-induced aggregation resulted in reduced aggregate surface attachment and greater aggregate size than the single-cell populations under various shear stresses. Additionally, the surface area coverage of bacterial aggregates on PE was relatively high compared to that on other materials, which could potentially be due to the rougher surface of PE. Furthermore, increasing shear stress to 78 mPa decreased aggregate attachment to Ti and HA while increasing the aggregates’ average size. Therefore, this study demonstrates that SF induced inhibition of aggregate attachment to all materials, suggesting that biofilm formation is initiated by lodging of aggregates on the surface features of implants and host tissues. IMPORTANCE Periprosthetic joint infection occurring after artificial joint replacement is a major clinical issue that require repeated surgeries and antibiotic interventions. Unfortunately, 26% of patients die within 5 years of developing these infections. Staphylococcus aureus is the bacterium most commonly responsible for this problem and can form biofilms to provide protection from antibiotics as well as the immune system. Although biofilms are evident on the infected implants, it is unclear how these are attached to the surface in the first place. Recent in vitro investigations have shown that staphylococcal strains rapidly form aggregates in the presence of synovial fluid and provide protection to bacteria, thus allowing them time to attach to the implant surface, leading to biofilm formation. In this study, we investigated the attachment kinetics of Staphylococcus aureus aggregates on different orthopedic materials. The information presented in this article will be useful in surgical management and implant design.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erica Tambone ◽  
Emiliana Bonomi ◽  
Paolo Ghensi ◽  
Devid Maniglio ◽  
Chiara Ceresa ◽  
...  

Abstract Background Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. Methods R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5) using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. Results R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 99%, 47% and 7% and of S. epidermidis by 54%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 78% for S. epidermidis at 24 h. Conclusions R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


2021 ◽  
Vol 7 (7) ◽  
pp. 574
Author(s):  
Natalia Gómez-Casanova ◽  
Tania Lozano-Cruz ◽  
Juan Soliveri ◽  
Rafael Gomez ◽  
Paula Ortega ◽  
...  

Candida albicans is a human pathogen of significant clinical relevance. This pathogen is resistant to different drugs, and most clinical antifungals are not effective against the prevention and treatment of C. albicans infections. As with other microorganisms, it can produce biofilms that serve as a barrier against antifungal agents and other substances, contributing to infection in humans and environmental tolerance of this microorganism. Thus, resistances and biofilm formation make treatment difficult. In addition, the complete eradication of biofilms in implants, catheters and other medical devices, is challenging and necessary to prevent relapses of candidemia. Therefore, it is a priority to find new molecules or combinations of compounds with anti-Candida biofilm activity. Due to the difficulty of treating and removing biofilms, the aim of this study was to evaluate the in vitro ability of different generation of cationic carbosilane dendrons derived from 4-phenylbutyric acid, ArCO2Gn(SNMe3I)m, to eradicate C. albicans biofilms. Here, we assessed the antifungal activity of the second generation dendron ArCO2G2(SNMe3I)4 against C. albicans cells and established biofilms since it managed to seriously damage the membrane. In addition, the combinations of the second generation dendron with AgNO3 or EDTA eradicated the viability of biofilm cells. Alterations were observed by scanning electron microscopy and cytotoxicity was assessed on HeLa cells. Our data suggest that the dendritic compound ArCO2G2(SNMe3I)4 could represent an alternative to control the infections caused by this pathogen.


2021 ◽  
Author(s):  
Erica Tambone ◽  
Emiliana Bonomi ◽  
Paolo Ghensi ◽  
Devid Maniglio ◽  
Chiara Ceresa ◽  
...  

Abstract Background: Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. Methods: R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5). using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. Results: R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 99%, 47% and 7% and of S. epidermidis by 54%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 78% for S. epidermidis at 24 h. Conclusions: R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


2020 ◽  
Vol 10 (19) ◽  
pp. 6721
Author(s):  
Aida Meto ◽  
Bruna Colombari ◽  
Alessandra Odorici ◽  
Lavinia Beatrice Giva ◽  
Eva Pericolini ◽  
...  

Several new products with innovative formulations are being proposed to facilitate oral care. Here, we evaluated the effects of a commercially available product, a toothpaste and chewing gum named Biorepair Peribioma, on oral microorganisms of healthy subjects. Saliva from six volunteers was collected during 20 min of mastication of a traditional gum (gum A) and the Biorepair Peribioma gum (gum P). Orthodontic elastics (OE) were in vitro contaminated with salivary samples, both A and P, and subsequently exposed or not to a Biorepair Peribioma toothpaste-conditioned supernatant (Tp-SUP). The salivary samples were tested for initial microbial load; hence, the contaminated OE were assessed for microbial growth, adhesion, biofilm formation and persistence; moreover, species identification was assessed. We found that the salivary samples A and P had similar microbial load; upon contamination, microbial adhesion onto the OE was detected to a lower extent when using saliva P with respect to saliva A. Microbial growth and biofilm formation, assessed at 24 h, remained at lower levels in OE exposed to saliva P, compared to saliva A. This difference between salivary samples A and P was confirmed when measuring biofilm persistence (48 h), while it was lost in terms of microbial re-growth (48 h). The Tp-SUP treatment drastically affected microbial load at 24 h and strongly impaired biofilm formation/persistence, in OE exposed to both salivary samples A and P. Finally, such treatment resulted in consistent overgrowth of Lactobacilli, bacterial species originally present both in the Biorepair Peribioma toothpaste and gum. In conclusion, by an in vitro pilot study, we show that the Biorepair Peribioma toothpaste and gum deeply affect oral microorganisms’ behavior, drastically impairing their ability to contaminate and produce plaque onto orthodontic devices.


Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 103 ◽  
Author(s):  
Elizabeth Cadavid ◽  
Sara Robledo ◽  
Wiston Quiñones ◽  
Fernando Echeverri

Bacterial resistance is caused by several biochemical factors, the formation of biofilm being one of the main causes. This process is triggered by Quorum Sensing (QS), through the production of endogenous molecules, although other substances such as natural products can also do this. In this work, we aimed to determine whether some drugs are involved in the induction of biofilm formation in Klebsiella pneumoniae ATCC 13884, and thus, increase bacterial resistance. For this, the effect of 22 drugs on K. pneumoniae ATCC 13884 growth was determined at sub-plasmatic concentrations; the production of autoinducer lactones was established by HPLC and with a biosensor. The induction of biofilm formation was determined through crystal violet assay at 585 nm in a microplate reader and using urethral catheters. According to the in vitro assays, some drugs were found to induce biofilm formation in K. pneumoniae ATCC 13884. The effect of acetaminophen, hydrochlorothiazide, and progesterone stood out. The first drug caused several changes in the biochemistry of K. pneumoniae ATCC 13884 related to QS: high synthesis of N-hexanoyl-homoserine lactone, increasing bacterial populations by 27% and biofilm formation by 49%, and a more gentamicin resistant biofilm. Furthermore, it increased the colonization area of urethral catheters. Hydrochlorothiazide showed the biggest increase in the induction of biofilm formation of 51%, and progesterone displayed the greatest ability to provoke bacterial mass adherence but had no effects on K. pneumoniae ATCC 13884 bacterial population growth.


2020 ◽  
Author(s):  
Erica Tambone ◽  
Emiliana Bonomi ◽  
Paolo Ghensi ◽  
Devid Maniglio ◽  
Chiara Ceresa ◽  
...  

Abstract Background: Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. Methods: R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5). using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. Results: R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 98%, 49% and 10% and of S. epidermidis by 53%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 75% for S. epidermidis at 24 h. Conclusions: R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


Sign in / Sign up

Export Citation Format

Share Document