Effect of stimulation of anterior hypothalamic area on urinary bladder function of the anesthetized rat

2004 ◽  
Vol 14 (4) ◽  
Author(s):  
I. Rocha ◽  
L. Silva-Carvalho ◽  
K.M. Spyer
2019 ◽  
Vol 97 (8) ◽  
pp. 766-772
Author(s):  
Ezidin G. Kaddumi

The coexistence of different visceral pathologies in patients suffering from irritable bowel syndrome, interstitial cystitis, and other pathologies, necessitates the study of these pathologies under complicated conditions. In the present study, cystometry recordings were used to investigate the effect of distal esophageal chemical irritation on the urinary bladder interaction with distal colon distention, distal esophageal distention, and electrical stimulation of abdominal branches of vagus nerve. Distal esophageal chemical irritation significantly decreased the intercontraction time via decreasing the voiding time. Also, distal esophageal chemical irritation significantly decreased the pressure amplitude by decreasing the maximum pressure. Following distal esophageal chemical irritation, distal esophageal distention was able to significantly decrease the intercontraction time by decreasing the storage time. However, 3 mL distal colon distention significantly increased the intercontraction time by increasing the storage time. On the other hand, following distal esophageal chemical irritation, electrical stimulation of abdominal branches of vagus nerve did not have any significant effect on intercontraction time. However, electrical stimulation of abdominal branches of vagus nerve significantly increased the pressure amplitude by increasing the maximum pressure. The results of this study demonstrate that urinary bladder function and interaction of bladder with other viscera can be affected by chemical irritation of distal esophagus.


1993 ◽  
Vol 265 (1) ◽  
pp. R132-R138 ◽  
Author(s):  
C. L. Cheng ◽  
C. P. Ma ◽  
W. C. de Groat

The effect of capsaicin on micturition and associated reflexes was studied in urethan-anesthetized female rats. Capsaicin or vehicle solution were administered 4 days before the experiment in a dose of 125 mg/kg sc or during the experiment in a dose of 50-100 mg/kg sc. Activity of the urinary bladder was recorded by measuring intravesical pressure via a urethral catheter while slowly filling (0.052 ml/min) the bladder or when the bladder was distended beyond the micturition threshold and maintained at a constant volume. Pretreatment with capsaicin did not significantly change various parameters of urinary bladder function including micturition volume threshold or the amplitude, duration, and interval between reflex bladder contractions. However, capsaicin pretreatment significantly reduced (80% decrease) the arterial pressor responses accompanying reflex bladder contractions and reduced by approximately one-half the percentage of animals in which bladder activity was inhibited by stimulation of the uterine cervix. A large dose of capsaicin (50 mg/kg sc) elicited an acute block of bladder activity that persisted for 8-15 h. This effect is attributable to an action on myelinated afferent or efferent components of the micturition reflex pathway. It is concluded that capsaicin-sensitive afferents are not essential for the performance of micturition in the rat. However, these afferents are involved in cervicovesical reflex mechanisms that modulate bladder activity and in vascular reflexes triggered by isometric bladder contractions.


1961 ◽  
Vol 36 (2) ◽  
pp. 180-184 ◽  
Author(s):  
Béla Flerkó ◽  
Vera Bárdos

ABSTRACT Absence of compensatory ovarian hypertrophy in »constant oestrus rats« from lesions in the anterior hypothalamic area suggests that nervous elements localized in this region play an essential role in the stimulation of gonadotrophin output by diminution of the blood oestrogen level. The constant vaginal oestrus after unilateral ovariectomy in the majority of animals was, however, repeatedly interrupted by vaginal smears of a dioestrous type. The appearance of a dioestrous vaginal smear in the »hypothalamic constant oestrus rats« is often associated with some luteinisation. It is assumed that diminution of the blood oestrogen level by reduction of ovarian tissue in these animals may bring about a release of LH sufficient to cause formation of corpora lutea.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoko Kato ◽  
Harumi Katsumata ◽  
Ayumu Inutsuka ◽  
Akihiro Yamanaka ◽  
Tatsushi Onaka ◽  
...  

AbstractMultiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


1992 ◽  
Vol 173 (1) ◽  
pp. 181-203 ◽  
Author(s):  
B. James-Curtis ◽  
C. M. Wood

The relative roles of the kidney and urinary bladder in ion, fluid and acid-base regulation were examined in freshwater rainbow trout chronically infused with either 140 mmol l-1 NaCl or 140 mmol l-1 NaHCO3 (3 ml kg-1 h-1) for 32 h. NaCl had a negligible effect on blood ionic and acid-base status, whereas NaHCO3 induced a metabolic alkalosis characterized by a rise in arterial pH and [HCO3-] and an equimolar fall in [Cl-]. Urine was collected via either an internal catheter, which bypassed bladder function, or an external urinary catheter, which collected naturally voided urine. As a percentage of the infusion rate, glomerular filtration rate increased by about 135 %, but urine flow rate (UFR) by only 80 %, reflecting increased tubular reabsorption of H2O. During NaCl infusion, virtually all of the extra Na+ and Cl- filtered was reabsorbed by the kidney tubules, resulting in an increased UFR with largely unchanged composition. During NaHCO3 infusion, tubular Na+ and Cl- reabsorption again kept pace with filtration. HCO3- reabsorption also increased, but did not keep pace with filtration; an increased flow of HCO3--rich urine resulted, which excreted about 10 % of the infused base load. At rest, fish fitted with external catheters voided in discrete bursts of about 0.85 ml kg-1 at 25 min intervals. During infusion, burst frequency increased by about 40 % and burst volume by about 20 %. Reabsorption by the bladder reduced UFR by 25 %, the excretion of Na+ and Cl- by 50 %, of K+ by 44 % and of urea by 25 %. These differences persisted on a relative basis during NaCl and NaHCO3 infusion despite the decreased residence time. However, HCO3- was neither secreted nor reabsorbed by the bladder. We conclude that the freshwater kidney functions to remove as much NaCl as possible from the urine, regardless of the NaCl load, and this role is supplemented by bladder function. The bladder plays no role in acid-base regulation during metabolic alkalosis.


1970 ◽  
Vol 61 (11) ◽  
pp. 1069-1075
Author(s):  
Goichi Momose ◽  
Hiroshi Endo ◽  
Hiroyo Ito

Sign in / Sign up

Export Citation Format

Share Document