Assessment of physiological state of microorganisms in activated sludge with flow cytometry: application for monitoring sludge production minimization

2008 ◽  
Vol 35 (11) ◽  
pp. 1261-1268 ◽  
Author(s):  
A. Prorot ◽  
C. Eskicioglu ◽  
R. Droste ◽  
C. Dagot ◽  
P. Leprat
1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


2000 ◽  
Vol 42 (12) ◽  
pp. 189-200 ◽  
Author(s):  
G.-H. Chen ◽  
H.-K. Mo ◽  
S. Saby ◽  
W.-k. Yip ◽  
Y. Liu

Minimization of excess sludge production in activated sludge processes has been pursued around the world in order to meet stringent environmental regulations on sludge treatment and disposal. To achieve this goal, physical, chemical, and biological approaches have been proposed. In this paper, a chemical compound, 3,3′,4′,5-tetrachlorosalicylanilide (TCS) was tested for enhancing microbial energy spilling of the sludgeso as to minimize its growth. In order to examine this, an exploratory study was conducted using both batch and continuous activated sludge cultures. Batch experiments with these two cultures were carried out at different initial concentrations of TCS. It has been confirmed that an addition of TCS is effective in reducing the production of both the sludge cultures, particularly the continuous culture where the observed growth yield was reduced by around 70%, when the initial TCS concentration was 0.8 ppm. Meanwhile, the substrate removal activity of this culture was found not to be affected at this TCS concentration. To further evaluate the TCS effect, a pure microbial culture of E. coli was employed. Batch experiment results with this culture implied that TCS might be able to reduce the cell density of E. coli drastically when an initial TCS concentration was greater than 0.12 ppm. It was also found that TCS was not toxic to this type of bacteria. Microscopic examinations with a 4′, 6-diamidino-2-phenylindole (DAPI) staining technique revealed that TCS neither affected the cell division nor altered the cell size of E. coli. However, both the cell ATP content and the cell dry weight were reduced significantly with the addition of TCS.


2011 ◽  
Vol 2011 (15) ◽  
pp. 2326-2338
Author(s):  
Majdala Mansour-Geoffrion ◽  
Peter L. Dold ◽  
Dwight Houweling ◽  
Daniel Lamarre ◽  
Alain Gadbois ◽  
...  

2004 ◽  
Vol 49 (10) ◽  
pp. 41-49 ◽  
Author(s):  
M. Böhler ◽  
H. Siegrist

Disposal of sewage sludge is forbidden and agricultural use of stabilized sludge will be banned in 2005 in Switzerland. The sludge has to be dewatered, dried, incinerated and the ashes disposed in landfills. These processes are cost intensive and lead also to the loss of valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Partial ozonation of the return sludge of an activated sludge system reduces significantly excess sludge production, improves settling properties of the sludge and reduces bulking and scumming. The solubilized COD will also improve denitrification if the treated sludge is recycled to the anoxic zone. But ozonation will partly inhibit and kill nitrifiers and might therefore lead to a decrease of the effective solid retention time of the nitrifier, which reduces the safety of the nitrification. This paper discusses the effect of ozonation on sludge reduction, the operation stability of nitrification, improvement of denitrification and gives also an energy and cost evaluation.


2010 ◽  
Vol 62 (6) ◽  
pp. 1379-1385 ◽  
Author(s):  
Lin Song ◽  
Jiang Wenju ◽  
Tang Qiong ◽  
Li Yaozhong

This study investigated the effects of 2,4-dichlorophenol on reduction of activated sludge in membrane bioreactors. Significant inhibition on sludge growth and slight reduction in COD removal were observed at higher 2,4-dichlorophenol dosages. The deviation between relative specific COD removal rate (q/q0) and relative specific growth rate (μ/μ0) suggested that a minimum 2,4-dichlorophenol concentration was required for uncoupling of anabolism and catabolism. With the increase of the dosage of 2,4-dichlorophenol, stepwise improvement of biomass bioactivity and the reduction in activated sludge production were achieved simultaneously. Compared with the control bioreactor, the peak distribution of floc size in the 2,4-dichlorophenol added bioreactor shifted to a range of smaller floc size. Besides, addition of 2,4-dichlorophenol caused little variation of microorganism community structure and SVI value of the sludge. After 24-hour operation, the residue 2,4-dichlorophenol concentration in the bioreactors was reduced to a negligible level.


2020 ◽  
Vol 90 ◽  
pp. 51-58 ◽  
Author(s):  
Vanesa Benito ◽  
Javier Etxebarria ◽  
Felipe Goñi-de-Cerio ◽  
Iñigo Gonzalez ◽  
Pilar Brettes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document