A comprehensive catalogue of polyketide synthase gene clusters in lichenizing fungi

2018 ◽  
Vol 45 (12) ◽  
pp. 1067-1081 ◽  
Author(s):  
Robert L. Bertrand ◽  
John L. Sorensen
2007 ◽  
Vol 6 (7) ◽  
pp. 1210-1218 ◽  
Author(s):  
Daren W. Brown ◽  
Robert A. E. Butchko ◽  
Mark Busman ◽  
Robert H. Proctor

ABSTRACT Fumonisins are mycotoxins produced by some Fusarium species and can contaminate maize or maize products. Ingestion of fumonisins is associated with diseases, including cancer and neural tube defects, in humans and animals. In fungi, genes involved in the synthesis of mycotoxins and other secondary metabolites are often located adjacent to each other in gene clusters. Such genes can encode structural enzymes, regulatory proteins, and/or proteins that provide self-protection. The fumonisin biosynthetic gene cluster includes 16 genes, none of which appear to play a role in regulation. In this study, we identified a previously undescribed gene (FUM21) located adjacent to the fumonisin polyketide synthase gene, FUM1. The presence of a Zn(II)2Cys6 DNA-binding domain in the predicted protein suggested that FUM21 was involved in transcriptional regulation. FUM21 deletion (Δfum21) mutants produce little to no fumonisin in cracked maize cultures but some FUM1 and FUM8 transcripts in a liquid GYAM medium. Complementation of a Δfum21 mutant with a wild-type copy of the gene restored fumonisin production. Analysis of FUM21 cDNAs identified four alternative splice forms (ASFs), and microarray analysis indicated the ASFs were differentially expressed. Based on these data, we present a model for how FUM21 ASFs may regulate fumonisin biosynthesis.


2016 ◽  
Vol 69 (9) ◽  
pp. 712-718 ◽  
Author(s):  
Hisayuki Komaki ◽  
Natsuko Ichikawa ◽  
Tomohiko Tamura ◽  
Akio Oguchi ◽  
Moriyuki Hamada ◽  
...  

2006 ◽  
Vol 188 (11) ◽  
pp. 4024-4036 ◽  
Author(s):  
Xiao-Hua Chen ◽  
Joachim Vater ◽  
Jörn Piel ◽  
Peter Franke ◽  
Romy Scholz ◽  
...  

ABSTRACT Although bacterial polyketides are of considerable biomedical interest, the molecular biology of polyketide biosynthesis in Bacillus spp., one of the richest bacterial sources of bioactive natural products, remains largely unexplored. Here we assign for the first time complete polyketide synthase (PKS) gene clusters to Bacillus antibiotics. Three giant modular PKS systems of the trans-acyltransferase type were identified in Bacillus amyloliquefaciens FZB 42. One of them, pks1, is an ortholog of the pksX operon with a previously unknown function in the sequenced model strain Bacillus subtilis 168, while the pks2 and pks3 clusters are novel gene clusters. Cassette mutagenesis combined with advanced mass spectrometric techniques such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry revealed that the pks1 (bae) and pks3 (dif) gene clusters encode the biosynthesis of the polyene antibiotics bacillaene and difficidin or oxydifficidin, respectively. In addition, B. subtilis OKB105 (pheA sfp 0), a transformant of the B. subtilis 168 derivative JH642, was shown to produce bacillaene, demonstrating that the pksX gene cluster directs the synthesis of that polyketide.


2012 ◽  
Vol 78 (23) ◽  
pp. 8234-8244 ◽  
Author(s):  
Jennifer Gerke ◽  
Özgür Bayram ◽  
Kirstin Feussner ◽  
Manuel Landesfeind ◽  
Ekaterina Shelest ◽  
...  

ABSTRACTThe genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungusAspergillus nidulansby deleting the conserved eukaryoticcsnE/CSN5deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). ThecsnE/CSN5gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs.


Gene ◽  
2000 ◽  
Vol 246 (1-2) ◽  
pp. 123-131 ◽  
Author(s):  
Masanori Suwa ◽  
Hiroyuki Sugino ◽  
Akiko Sasaoka ◽  
Eijiro Mori ◽  
Shingo Fujii ◽  
...  

2020 ◽  
Vol 48 (22) ◽  
pp. e130-e130
Author(s):  
Chaoyi Song ◽  
Ji Luan ◽  
Ruijuan Li ◽  
Chanjuan Jiang ◽  
Yu Hou ◽  
...  

Abstract Biosynthesis reprograming is an important way to diversify chemical structures. The large repetitive DNA sequences existing in polyketide synthase genes make seamless DNA manipulation of the polyketide biosynthetic gene clusters extremely challenging. In this study, to replace the ethyl group attached to the C-21 of the macrolide insecticide spinosad with a butenyl group by refactoring the 79-kb gene cluster, we developed a RedEx method by combining Redαβ mediated linear-circular homologous recombination, ccdB counterselection and exonuclease mediated in vitro annealing to insert an exogenous extension module in the polyketide synthase gene without any extra sequence. RedEx was also applied for seamless deletion of the rhamnose 3′-O-methyltransferase gene in the spinosad gene cluster to produce rhamnosyl-3′-desmethyl derivatives. The advantages of RedEx in seamless mutagenesis will facilitate rational design of complex DNA sequences for diverse purposes.


2020 ◽  
Vol 48 (8) ◽  
pp. e48-e48 ◽  
Author(s):  
Peng Xu ◽  
Cyrus Modavi ◽  
Benjamin Demaree ◽  
Frederick Twigg ◽  
Benjamin Liang ◽  
...  

Abstract Microbial biosynthetic gene clusters are a valuable source of bioactive molecules. However, because they typically represent a small fraction of genomic material in most metagenomic samples, it remains challenging to deeply sequence them. We present an approach to isolate and sequence gene clusters in metagenomic samples using microfluidic automated plasmid library enrichment. Our approach provides deep coverage of the target gene cluster, facilitating reassembly. We demonstrate the approach by isolating and sequencing type I polyketide synthase gene clusters from an Antarctic soil metagenome. Our method promotes the discovery of functional-related genes and biosynthetic pathways.


Sign in / Sign up

Export Citation Format

Share Document