Interference with cell-to-cell movement of Tomato mosaic virus by transient overexpression of Arabidopsis thaliana KELP homologs from different plant species

2009 ◽  
Vol 76 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Nobumitsu Sasaki ◽  
Tatsuro Odawara ◽  
Masakazu Deguchi ◽  
Yasuhiko Matsushita ◽  
Hiroshi Nyunoya
2003 ◽  
Vol 16 (7) ◽  
pp. 608-616 ◽  
Author(s):  
Frédéric Revers ◽  
Thomas Guiraud ◽  
Marie-Christine Houvenaghel ◽  
Thierry Mauduit ◽  
Olivier Le Gall ◽  
...  

With the aim to characterize plant and viral factors involved in the molecular interactions between plants and potyviruses, a Lettuce mosaic virus (LMV)-Arabidopsis thaliana pathosystem was developed. Screening of Arabi-dopsis accessions with LMV isolates indicated the existence of a large variability in the outcome of the interaction, allowing the classification of Arabidopsis accessions into seven susceptibility groups. Using a reverse genetic approach, the genome-linked protein of LMV, a multifunc-tional protein shown to be involved in viral genome amplification and movement of potyviruses, was established as the viral determinant responsible for the ability to overcome the resistance of the Niederzenz accession to LMV-0. Preliminary genetic analyses from F2 and recombinant inbred lines available between susceptible and resistant Arabidopsis accessions revealed the existence of at least three resistance phenotypes to LMV with different genetic bases. One dominant resistance gene, designated LLM1, involved in blocking the replication or cell-to-cell movement of the LMV-0 isolate in the Columbia accession, was mapped to chromosome I and shown to be linked to the marker nga280. At the same time, genetic analyses of segregating F2 populations were consistent with the restriction of the systemic movement of the LMV-AF199 isolate in Columbia being controlled by two dominant genes and with the complete resistance to all tested LMV isolates of the Cape Verde islands (Cvi) accession being conferred by a single recessive resistance gene. Sequencing of the eu-karyotic translation initiation factor 4E genes from the different LMV-resistant Arabidopsis accessions showed that these factors are not directly involved in the characterized resistance phenotypes.


2016 ◽  
Author(s):  
S. Ambrós ◽  
F. Martínez ◽  
P. Ivars ◽  
C. Hernández ◽  
F. de la Iglesia ◽  
...  

AbstractTomato is known to be a natural and experimental reservoir host for many plant viruses. In the last few years a new tobamovirus species, Tomato mottle mosaic virus (ToMMV), has been described infecting tomato and pepper plants in several countries worldwide. Upon observation of symptoms in tomato plants growing in a greenhouse in Valencia, Spain, we aimed to ascertain the etiology of the disease. Using standard molecular techniques, we first detected a positive sense single-stranded RNA virus as the probable causal agent. Next, we amplified, cloned and sequenced a ~3 kb fragment of its RNA genome which allowed us to identify the virus as a new ToMMV isolate. Through extensive assays on distinct plant species, we validated Koch’s postulates and investigated the host range of the ToMMV isolate. Several plant species were locally and/or systemically infected by the virus, some of which had not been previously reported as ToMMV hosts despite they are commonly used in research greenhouses. Finally, two reliable molecular diagnostic techniques were developed and used to assess the presence of ToMMV in different plants species. We discuss the possibility that, given the high sequence homology between ToMMV and Tomato mosaic virus, the former may have been mistakenly diagnosed as the latter by serological methods.


Author(s):  
Hagit Hak ◽  
Ziv Spiegelman

Tomato brown rugose fruit virus (ToBRFV) is a new virus of the Tobamovirus genus, causing substantial damage to tomato crops. Reports of recent ToBRFV outbreaks from around the world indicate an emerging global epidemic. ToBRFV overcomes all tobamovirus resistances in tomato, including the durable Tm-22 resistance gene, which had been effective against multiple tobamoviruses. Here, we show that the ToBRFV movement protein (MPToBRFV) enables the virus to evade Tm-22 resistance. Transient expression of MPToBRFV failed to activate the Tm-22 resistance response. Replacement of the original MP sequence of Tomato mosaic virus (ToMV) with MPToBRFV enabled this recombinant virus to infect Tm-22 resistant plants. Using hybrid protein analysis, we show that the elements required to evade Tm-22 are located between MPToBRFV amino acids 1 and 216, and not the C terminus as previously assumed. Analysis of ToBRFV systemic infection in tomato revealed that ToBRFV spreads slower compared to ToMV. Interestingly, replacement of Tobacco mosaic virus (TMV) and ToMV MPs with MPToBRFV caused an attenuation of systemic infection of both viruses. Cell-to-cell movement analysis showed that MPToBRFV moves less effectively compared to the TMV MP (MPTMV). These findings suggest that overcoming Tm-22 is associated with attenuated MP function. This may explain the high durability of Tm-22 resistance, which had remained unbroken for over 60 years.


2008 ◽  
Vol 89 (6) ◽  
pp. 1519-1524 ◽  
Author(s):  
Koki Fujisaki ◽  
Soko Kobayashi ◽  
Yayoi Tsujimoto ◽  
Satoshi Naito ◽  
Masayuki Ishikawa

The TOM2A gene of Arabidopsis thaliana encodes a four-pass transmembrane protein that is required for efficient multiplication of a tobamovirus, TMV-Cg. In this study, the involvement of three TOM2A homologues in tobamovirus multiplication in A. thaliana was examined. T-DNA insertion mutations in the three homologues, separately or in combination, did not affect TMV-Cg multiplication, whereas, in the tom2a genetic background, some combinations reduced it. This result suggests that the TOM2A homologues are functional in enhancing TMV-Cg multiplication, but their contribution is much less than TOM2A. Interestingly, the multiplication of another tobamovirus, Tomato mosaic virus, was not drastically affected by any combinations of the mutations in TOM2A and its homologues as far as we examined.


2000 ◽  
Vol 13 (10) ◽  
pp. 1139-1144 ◽  
Author(s):  
Christopher D. Dardick ◽  
Sheetal Golem ◽  
James N. Culver

To identify host factors that regulate susceptibility to Tobacco mosaic virus(TMV), 14 Arabidopsis thaliana ecotypes were screened for their ability to support TMV systemic movement. The susceptibility phenotypes observed included one ecotype that permitted rapid TMV movement accompanied by symptoms, nine ecotypes that allowed a slower intermediate rate of systemic movement without symptoms, and four ecotypes that allowed little or no systemic TMV movement. Molecular comparisons between ecotypes representing the rapid (Shahdara), intermediate (Col-1), and slow (Tsu-1) movement phenotypes revealed a positive correlation between the ability of TMV to move cell to cell and its speed of systemic movement. Additionally, protoplasts prepared from all three ecotypes supported similar levels of TMV replication, indicating that viral replication did not account for differences in systemic movement. Furthermore, induction of the pathogenesis-related genes PR-1 and PR-5 occurred only in the highly susceptible ecotype Shahdara, demonstrating that reduced local and systemic movement in Col-1 and Tsu-1 was not due to the activation of known host defense responses. Genetic analysis of F2 progeny derived from crosses made between Shahdara and Tsu-1 or Col-1 and Tsu-1 showed the faster cell-to-cell movement phenotypes of Shahdara and Col-1 segregated as single dominant genes. In addition, the Shahdara symptom phenotype segregated independently as a single recessive gene. Taken together, these findings suggest that, within Arabidopsis ecotypes, at least two genes modulate susceptibility to TMV.


2005 ◽  
Vol 18 (5) ◽  
pp. 428-434 ◽  
Author(s):  
Carl N. Mayers ◽  
Kian-Chung Lee ◽  
Catherine A. Moore ◽  
Sek-Man Wong ◽  
John P. Carr

Salicylic acid (SA)-induced resistance to Cucumber mosaic virus (CMV) in tobacco (Nicotiana tabacum) results from inhibition of systemic virus movement and is induced via a signal transduction pathway that also can be triggered by antimycin A, an inducer of the mitochondrial enzyme alternative oxidase (AOX). In Arabidopsis thaliana, inhibition of CMV systemic movement also is induced by SA and antimycin A. These results indicate that the mechanisms underlying induced resistance to CMV in tobacco and A. thaliana are very similar. In contrast to the situation in tobacco and A. thaliana, in squash (Cucurbita pepo), SA-induced resistance to CMV results from inhibited virus accumulation in directly inoculated tissue, most likely through inhibition of cell-to-cell movement. Furthermore, neither of the AOX inducers antimycin A or KCN induced resistance to CMV in squash. Additionally, AOX inhibitors that compromise SAinduced resistance to CMV in tobacco did not inhibit SAinduced resistance to the virus in squash. The results show that different host species may use significantly different approaches to resist infection by the same virus. These findings also imply that caution is required when attempting to apply findings on plant-virus interactions from model systems to a wider range of host species.


1998 ◽  
Vol 11 (6) ◽  
pp. 498-503 ◽  
Author(s):  
Hans Weber ◽  
Artur J. P. Pfitzner

The Tm-22 resistance gene is used in most commercial tomato cultivars for protection against infection with tomato mosaic virus (ToMV). It has been suggested that Tm-22 resistance interferes with viral cell-to-cell movement in plants; ToMV strain ToMV-22 requires two amino acid (aa) exchanges in the carboxy-terminal region of the viral 30-kDa movement protein (at positions 238 and 244) to overcome Tm-22 resistance. For further analysis of this region of the 30-kDa protein, two stop codons were introduced into ToMV movement proteins at aa positions 235 and 237, leading to deletion of the terminal 30 aa. The mutant virus strains were able to infect wild-type tomato plants systemically, suggesting the carboxy-terminal portion of the ToMV 30-kDa protein is dispensable for virus transport in tomato. Even more important, the deletion mutants overcame the Tm-22 resistance gene. These data indicate the carboxy-terminal domain of the ToMV movement protein serves as a recognition target in the context of the Tm-22 resistance gene. Furthermore, expression of the 30-kDa movement protein from wild-type ToMV, but not from ToMV-22, in transgenic tomato plants with the Tm-22 resistance gene led to elicitation of a necrotic reaction in tomato seedlings, showing that the 30-kDa protein on its own is able to induce the plant's defense reaction.


2015 ◽  
Vol 89 (13) ◽  
pp. 6695-6710 ◽  
Author(s):  
Jun Jiang ◽  
Camilo Patarroyo ◽  
Daniel Garcia Cabanillas ◽  
Huanquan Zheng ◽  
Jean-François Laliberté

ABSTRACTPositive-sense RNA viruses remodel host cell endomembranes to generate quasi-organelles known as “viral factories” to coordinate diverse viral processes, such as genome translation and replication. It is also becoming clear that enclosing viral RNA (vRNA) complexes within membranous structures is important for virus cell-to-cell spread throughout the host. In plant cells infected by turnip mosaic virus (TuMV), a member of the familyPotyviridae, peripheral motile endoplasmic reticulum (ER)-derived viral vesicles are produced that carry the vRNA to plasmodesmata for delivery into adjacent noninfected cells. The viral protein 6K2is responsible for the formation of these vesicles, but how 6K2is involved in their biogenesis is unknown. We show here that 6K2is associated with cellular membranes. Deletion mapping and site-directed mutagenesis experiments defined a soluble N-terminal 12-amino-acid stretch, in particular a potyviral highly conserved tryptophan residue and two lysine residues that were important for vesicle formation. When the tryptophan residue was changed into an alanine in the viral polyprotein, virus replication still took place, albeit at a reduced level, but cell-to-cell movement of the virus was abolished. Yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitation experiments showed that 6K2interacted with Sec24a, a COPII coatomer component. Appropriately, TuMV systemic movement was delayed in anArabidopsis thalianamutant line defective in Sec24a. Intercellular movement of TuMV replication vesicles thus requires ER export of 6K2, which is mediated by the interaction of the N-terminal domain of the viral protein with Sec24a.IMPORTANCEMany plant viruses remodel the endoplasmic reticulum (ER) to generate vesicles that are associated with the virus replication complex. The viral protein 6K2of turnip mosaic virus (TuMV) is known to induce ER-derived vesicles that contain vRNA as well as viral and host proteins required for vRNA synthesis. These vesicles not only sustain vRNA synthesis, they are also involved in the intercellular trafficking of vRNA. In this investigation, we found that the N-terminal soluble domain of 6K2is required for ER export of the protein and for the formation of vesicles. ER export is not absolutely required for vRNA replication but is necessary for virus cell-to-cell movement. Furthermore, we found that 6K2physically interacts with the COPII coatomer Sec24a and that anArabidopsis thalianamutant line with a defective Sec24a shows a delay in the systemic infection by TuMV.


Sign in / Sign up

Export Citation Format

Share Document