Remote sensing to map influence of light pollution on Cory’s shearwater in São Miguel Island, Azores Archipelago

2011 ◽  
Vol 58 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Pedro Rodrigues ◽  
Christoph Aubrecht ◽  
Artur Gil ◽  
Travis Longcore ◽  
Chris Elvidge
2009 ◽  
Vol 49 (1) ◽  
Author(s):  
A. Barducci ◽  
M. Benvenuti ◽  
F. Castagnoli ◽  
D. Guzzi ◽  
P. Marcoionni ◽  
...  

2020 ◽  
Vol 42 ◽  
pp. 69-81

Light pollution in Slovenia in 2019 with special regard to Natura 2000 areas The article shows the state of light pollution in Slovenia. Remote sensing data from the Suomi satellite were analysed. Light pollution is shown by radiance expressed in nW/(sr cm2 ). In Slovenia, there are large differences in state of light polution. The most polluted areas are located in the area of larger settlements and in areas with higher levels of infrastructure. The spread of light does not stop at the borders of protected areas, so we also analyzed the state of light pollution in Natura 2000 sites in Slovenia. It turns out that the most lightpolluted areas are those that lie around larger settlements or suburbanised regions (Ljubljansko Barje, Šmarna gora, Drava).


2018 ◽  
Vol 7 (7) ◽  
pp. 243 ◽  
Author(s):  
Wei Jiang ◽  
Guojin He ◽  
Wanchun Leng ◽  
Tengfei Long ◽  
Guizhou Wang ◽  
...  

2003 ◽  
Author(s):  
Alessandro Barducci ◽  
Paolo Marcoionni ◽  
Ivan Pippi ◽  
Marco Poggesi

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2728 ◽  
Author(s):  
Bo Sun ◽  
Yang Zhang ◽  
Qiming Zhou ◽  
Duo Gao

Most studies on light pollution are based on light intensity retrieved from nighttime light (NTL) remote sensing with less consideration of the population factors. Furthermore, the coarse spatial resolution of traditional NTL remote sensing data limits the refined applications in current smart city studies. In order to analyze the influence of light pollution on populated areas, this study proposes an index named population exposure to light pollution (PELP) and conducts a street-scale analysis to illustrate spatial variation of PELP among residential areas in cites. By taking Shenzhen city as a case, multi-source data were combined including high resolution NTL remote sensing data from the Luojia 1-01 satellite sensor, high-precision mobile big data for visualizing human activities and population distribution as well as point of interest (POI) data. Results show that the main influenced areas of light pollution are concentrated in the downtown and core areas of newly expanded areas with obvious deviation corrected like traditional serious light polluted regions (e.g., ports). In comparison, commercial–residential mixed areas and village-in-city show a high level of PELP. The proposed method better presents the extent of population exposure to light pollution at a fine-grid scale and the regional difference between different types of residential areas in a city.


2021 ◽  
Vol 13 (12) ◽  
pp. 2294
Author(s):  
John C. Barentine ◽  
Ken Walczak ◽  
Geza Gyuk ◽  
Cynthia Tarr ◽  
Travis Longcore

The physiology and behavior of most life at or near the Earth’s surface has evolved over billions of years to be attuned with our planet’s natural light–dark cycle of day and night. However, over a relatively short time span, humans have disrupted this natural cycle of illumination with the introduction and now widespread proliferation of artificial light at night (ALAN). Growing research in a broad range of fields, such as ecology, the environment, human health, public safety, economy, and society, increasingly shows that ALAN is taking a profound toll on our world. Much of our current understanding of light pollution comes from datasets generated by remote sensing, primarily from two missions, the Operational Linescan System (OLS) instrument of the now-declassified Defense Meteorological Satellite Program (DMSP) of the U.S. Department of Defense and its follow-on platform, the Day-Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on board the Suomi National Polar-Orbiting Partnership satellite. Although they have both proved invaluable for ALAN research, sensing of nighttime lights was not the primary design objective for either the DMSP-OLS or VIIRS-DNB instruments; thus, they have some critical limitations. Being broadband sensors, both the DMSP-OLS and VIIRS-DNB instruments suffer from a lack of spectral information. Additionally, their spatial resolutions are too low for many ALAN research applications, though the VIIRS-DNB instrument is much improved over the DMSP-OLS in this regard, as well as in terms of dynamic range and quantization. Further, the very late local time of VIIRS-DNB observations potentially misses the true picture of ALAN. We reviewed both current literature and guiding advice from ALAN experts, aggregated from a diverse range of disciplines and Science Goals, to derive recommendations for a mission to expand knowledge of ALAN in areas that are not adequately addressed with currently existing orbital missions. We propose a stand-alone mission focused on understanding light pollution and its effects on our planet. Here we review the science cases and the subsequent mission recommendations for NITESat (Nighttime Imaging of Terrestrial Environments Satellite), a dedicated ALAN observing mission.


Sign in / Sign up

Export Citation Format

Share Document