Application of spatial prediction techniques to defining three-dimensional landslide shear surface geometry

Landslides ◽  
2009 ◽  
Vol 6 (4) ◽  
pp. 321-333 ◽  
Author(s):  
Katherine S. Kalenchuk ◽  
Douglas J. Hutchinson ◽  
Mark S. Diederichs
Author(s):  
Diego Micheli ◽  
Valentino Pediroda ◽  
Stefano Pieri

An automatic approach for the multi-objective shape optimization of microgas turbine heat exchangers is presented. According to the concept of multidisciplinary optimization, the methodology integrates a CAD parametric model of the heat transfer surfaces, a three-dimensional meshing tool, and a CFD solver, all managed by a design optimization platform. The repetitive pattern of the surface geometry has been exploited to reduce the computational domain size, and the constant flux boundary conditions have been imposed to better suit the real operative conditions. A new approach that couples cold and warm fluids in a periodic unitary cell is introduced. The effectiveness of the numerical procedure was verified comparing the numerical results with available literature data. The optimization objectives are maximizing the heat transfer rate and minimizing both friction factor and heat transfer surface. The paper presents the results of the optimization of a 50kWMGT recuperator. The design procedure can be effectively extended and applied to any industrial heat exchanger application.


2021 ◽  
Vol 16 (4) ◽  
pp. 778-785
Author(s):  
Namiko Sakurai ◽  
Koyuru Iwanami ◽  
Shingo Shimizu ◽  
Yasushi Uji ◽  
Shin-ichi Suzuki ◽  
...  

The National Research Institute for Earth Science and Disaster Resilience deployed a lightning mapping array (LMA) in the Tokyo metropolitan area in March 2017. Called the “Tokyo LMA,” it obtains detailed three-dimensional observations of the total lightning activity (cloud-to-ground and intracloud flashes) in storms. The network initially consisted of 8 receiving stations, expanded to 12 stations in March 2018. Real-time total lightning images were first opened on the webpage in Japan. Real-time observations from the Tokyo LMA will be used in nowcasting lightning hazards and mitigating lightning disasters. Archived data will be used to develop lightning prediction techniques and a lightning climatology for the Tokyo metropolitan area.


2021 ◽  
Author(s):  
Vincent Roche ◽  
Giovanni Camanni ◽  
Conrad Childs ◽  
Tom Manzocchi ◽  
John Walsh ◽  
...  

<p>Normal faults are often complex three-dimensional structures comprising multiple sub-parallel segments separated by intact or breached relay zones. In this study we outline geometrical characterisations capturing this 3D complexity and providing a semi-quantitative basis for the comparison of faults and for defining the factors controlling their geometrical evolution. Relay zones are classified according to whether they step in the strike or dip direction and whether the relay zone-bounding fault segments are unconnected in 3D or bifurcate from a single surface. Complex fault surface geometry is then described in terms of the relative numbers of different types of relay zones to allow comparison of fault geometry between different faults and different geological settings. A large database of 87 fault arrays compiled primarily from mapping 3D seismic reflection surveys and classified according to this scheme, reveals the diversity of 3D fault geometry. Analysis demonstrates that mapped fault geometries depend on geological controls, primarily the heterogeneity of the faulted sequence and the presence of a pre-existing structure. For example, relay zones with an upward bifurcating geometry are prevalent in faults that reactivate deeper structures, whereas the formation of laterally bifurcating relays is promoted by heterogeneous mechanical stratigraphy. In addition, mapped segmentation depends on resolution limits and biases in fault mapping from seismic data. In particular, the results suggest that the proportion of bifurcating relay zones increases as data resolution increases. Overall, where a significant number of relay zones are mapped on a single fault, a wide variety of relay zone geometries occurs, demonstrating that individual faults can comprise segments that are both bifurcating and unconnected in three dimensions. Models for the geometrical evolution of fault arrays must therefore account for the full range of relay zone geometries that appears to be a characteristic of all faults.</p>


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 34 ◽  
Author(s):  
Piotr Szewczyk ◽  
Daniel Ura ◽  
Sara Metwally ◽  
Joanna Knapczyk-Korczak ◽  
Marcin Gajek ◽  
...  

Wettability of electrospun fibers is one of the key parameters in the biomedical and filtration industry. Within this comprehensive study of contact angles on three-dimensional (3D) meshes made of electrospun fibers and films, from seven types of polymers, we clearly indicated the importance of roughness analysis. Surface chemistry was analyzed with X-ray photoelectron microscopy (XPS) and it showed no significant difference between fibers and films, confirming that the hydrophobic properties of the surfaces can be enhanced by just roughness without any chemical treatment. The surface geometry was determining factor in wetting contact angle analysis on electrospun meshes. We noted that it was very important how the geometry of electrospun surfaces was validated. The commonly used fiber diameter was not necessarily a convincing parameter unless it was correlated with the surface roughness or fraction of fibers or pores. Importantly, this study provides the guidelines to verify the surface free energy decrease with the fiber fraction for the meshes, to validate the changes in wetting contact angles. Eventually, the analysis suggested that meshes could maintain the entrapped air between fibers, decreasing surface free energies for polymers, which increased the contact angle for liquids with surface tension above the critical Wenzel level to maintain the Cassie-Baxter regime for hydrophobic surfaces.


Author(s):  
H. Shmueli ◽  
G. Ziskind ◽  
R. Letan

The present study deals with single bubble growth on an uneven wall. A model problem is defined and solved using a three-dimensional numerical simulation. The wall has the shape of a triangular cavity and feature vortices. The equations solved in the present study are based on macro region modelling of the bubble alone and describe its growth from the initial state to detachment from the surface and consequent motion. The model includes a simultaneous solution of conservation equations for the liquid and gaseous phases, in conjunction with three-dimensional interface tracking. The latter is achieved using the level-set method. The numerical modeling includes the multi-grid method. The complete three-dimensional model is discretized using an original in-house numerical code realized in MATLAB. Different cases of bubble growth on the triangular cavity walls are investigated. The main conclusion from the calculations is that the bubble shape and its growth rate strongly depend on its location and on the channel orientation. New features, not possible for flat walls and special for this case, are revealed and discussed. It is demonstrated that under certain conditions, the bubble is obstructed by the surface geometry. It is also shown how a growing bubble affects the flow field inside a cavity, interacting with the vortex structure.


2002 ◽  
Vol 124 (4) ◽  
pp. 653-667 ◽  
Author(s):  
C. Jacq ◽  
D. Ne´lias ◽  
G. Lormand ◽  
D. Girodin

A three-dimensional elastic-plastic contact code based on semi-analytical method is presented and validated. The contact is solved within a Hertz framework. The reciprocal theorem with initial strains is then introduced, to express the surface geometry as a function of contact pressure and plastic strains. The irreversible nature of plasticity leads to an incremental formulation of the elastic-plastic contact problem, and an algorithm to solve this problem is set up. Closed form expression, which give residual stresses and surface displacements from plastic strains, are obtained by integration of the reciprocal theorem. The resolution of the elastic-plastic contact using the finite element (FE) method is discussed, and the semi-analytical code presented in this paper is validated by comparing results with experimental data from the nano-indentation test. Finally, the resolution of the rolling elastic-plastic contact is presented for smooth and dented surfaces and for a vertical or rolling loading. The main advantage of this code over classical FE codes is that the calculation time makes the transient analysis of three-dimensional contact problems affordable, including when a fine mesh is required.


2020 ◽  
Author(s):  
Amir Sagy ◽  
Vladimir Lyakhovsky ◽  
Yossef H. Hatzor

<p>Natural fault surfaces are interlocked, partly cohesive, and display multiscale geometric irregularities. Here we examine the nucleation of deformation and the evolution of shear in such interlocked surfaces using a closed-form analytical solution and a series of laboratory experiments.  The analytical model considers an interlocked interface with multiscale roughness between two linear elastic half-space blocks. The interface geometry is based on three-dimensional fault surfaces imaging. It is represented by a Fourier series and the plane strain solution for the elastic stress distribution is represented as a sum of the constant background stress generated by a uniform far-field loading and perturbations associated with the interface roughness. The model predicts the critical stress necessary for failure and the location of failure nucleation sites across the surface, as function of the initial surface geometry.</p><p>A similar configuration is adopted in laboratory experiments as carbonate blocks with rough interlocked surfaces generated by tensional fracturing are sheared in a servo-controlled direct shear apparatus. Resistance to shear and surface roughness evolution are measured under variable normal stresses, slip distances and slip rates.  We find that the evolution of surface morphology with shear is closely related to the loading configuration. Initially rough, interlocked, surfaces become rougher when normal stress and displacement rate are increased. Under a fixed, relatively low normal stress and fixed displacement rate however, the surfaces become smoother with increasing displacement distance.  </p><p>The shear of the interlocked slip surfaces is associated with volumetric deformation, wear and frictional slip, all of which are typically observed across natural fault zones. We suggest that their intensities and partitioning are strongly affected by the initial surface roughness characteristics, the background stress, and the rate and magnitude of shear displacement. </p>


2018 ◽  
Vol 119 (3) ◽  
pp. 862-876 ◽  
Author(s):  
Chelsea Tymms ◽  
Denis Zorin ◽  
Esther P. Gardner

Surface roughness is one of the most important qualities in haptic perception. Roughness is a major identifier for judgments of material composition, comfort, and friction and is tied closely to manual dexterity. Some attention has been given to the study of roughness perception in the past, but it has typically focused on noncontrollable natural materials or on a narrow range of artificial materials. The advent of high-resolution three-dimensional (3D) printing technology provides the ability to fabricate arbitrary 3D textures with precise surface geometry to be used in tactile studies. We used parametric modeling and 3D printing to manufacture a set of textured plates with defined element spacing, shape, and arrangement. Using active touch and two-alternative forced-choice protocols, we investigated the contributions of these surface parameters to roughness perception in human subjects. Results indicate that large spatial periods produce higher estimations of roughness (with Weber fraction = 0.19), small texture elements are perceived as rougher than large texture elements of the same wavelength, perceptual differences exist between textures with the same spacing but different arrangements, and roughness equivalencies exist between textures differing along different parameters. We posit that papillary ridges serve as tactile processing units, and neural ensembles encode the spatial profiles of the texture contact area to produce roughness estimates. The stimuli and the manufacturing process may be used in further studies of tactile roughness perception and in related neurophysiological applications. NEW & NOTEWORTHY Surface roughness is an integral quality of texture perception. We manufactured textures using high-resolution 3D printing, which allows precise specification of the surface spatial topography. In human psychophysical experiments we investigated the contributions of specific surface parameters to roughness perception. We found that textures with large spatial periods, small texture elements, and irregular, isotropic arrangements elicit the highest estimations of roughness. We propose that roughness correlates inversely with the total contacted surface area.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Shiping Zhu ◽  
Dongyu Zhao ◽  
Ling Zhang

Multiview video which is one of the main types of three-dimensional (3D) video signals, captured by a set of video cameras from various viewpoints, has attracted much interest recently. Data compression for multiview video has become a major issue. In this paper, a novel high efficiency fractal multiview video codec is proposed. Firstly, intraframe algorithm based on the H.264/AVC intraprediction modes and combining fractal and motion compensation (CFMC) algorithm in which range blocks are predicted by domain blocks in the previously decoded frame using translational motion with gray value transformation is proposed for compressing the anchor viewpoint video. Then temporal-spatial prediction structure and fast disparity estimation algorithm exploiting parallax distribution constraints are designed to compress the multiview video data. The proposed fractal multiview video codec can exploit temporal and spatial correlations adequately. Experimental results show that it can obtain about 0.36 dB increase in the decoding quality and 36.21% decrease in encoding bitrate compared with JMVC8.5, and the encoding time is saved by 95.71%. The rate-distortion comparisons with other multiview video coding methods also demonstrate the superiority of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document