scholarly journals A 3D hydrodynamic flow-focusing device for cell sorting

2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Xiaofei Yuan ◽  
Andrew Glidle ◽  
Hitoshi Furusho ◽  
Huabing Yin

AbstractOptical-based microfluidic cell sorting has become increasingly attractive for applications in life and environmental sciences due to its ability of sophisticated cell handling in flow. The majority of these microfluidic cell sorting devices employ two-dimensional fluid flow control strategies, which lack the ability to manipulate the position of cells arbitrarily for precise optical detection, therefore resulting in reduced sorting accuracy and purity. Although three-dimensional (3D) hydrodynamic devices have better flow-focusing characteristics, most lack the flexibility to arbitrarily position the sample flow in each direction. Thus, there have been very few studies using 3D hydrodynamic flow focusing for sorting. Herein, we designed a 3D hydrodynamic focusing sorting platform based on independent sheath flow-focusing and pressure-actuated switching. This design offers many advantages in terms of reliable acquisition of weak Raman signals due to the ability to precisely control the speed and position of samples in 3D. With a proof-of-concept demonstration, we show this 3D hydrodynamic focusing-based sorting device has the potential to reach a high degree of accuracy for Raman activated sorting.

RSC Advances ◽  
2013 ◽  
Vol 3 (39) ◽  
pp. 17762 ◽  
Author(s):  
Liguo Jiang ◽  
Weiping Wang ◽  
Ying Chau ◽  
Shuhuai Yao

2012 ◽  
Vol 6 (2) ◽  
pp. 024132 ◽  
Author(s):  
Sungmin Hong ◽  
Pei-Hsiang Tsou ◽  
Chao-Kai Chou ◽  
Hirohito Yamaguchi ◽  
Chin B. Su ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 270
Author(s):  
Adrian Doicu ◽  
Dmitry S. Efremenko ◽  
Thomas Trautmann

An algorithm for the retrieval of total column amount of trace gases in a multi-dimensional atmosphere is designed. The algorithm uses (i) certain differential radiance models with internal and external closures as inversion models, (ii) the iteratively regularized Gauss–Newton method as a regularization tool, and (iii) the spherical harmonics discrete ordinate method (SHDOM) as linearized radiative transfer model. For efficiency reasons, SHDOM is equipped with a spectral acceleration approach that combines the correlated k-distribution method with the principal component analysis. The algorithm is used to retrieve the total column amount of nitrogen for two- and three-dimensional cloudy scenes. Although for three-dimensional geometries, the computational time is high, the main concepts of the algorithm are correct and the retrieval results are accurate.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


2021 ◽  
Vol 25 (8) ◽  
Author(s):  
Yanwei Wang ◽  
Michael Seidel

AbstractFabrication of 3D microfluidic devices is normally quite expensive and tedious. A strategy was established to rapidly and effectively produce multilayer 3D microfluidic chips which are made of two layers of poly(methyl methacrylate) (PMMA) sheets and three layers of double-sided pressure sensitive adhesive (PSA) tapes. The channel structures were cut in each layer by cutting plotter before assembly. The structured channels were covered by a PMMA sheet on top and a PMMA carrier which contained threads to connect with tubing. A large variety of PMMA slides and PSA tapes can easily be designed and cut with the help of a cutting plotter. The microfluidic chip was manually assembled by a simple lamination process.The complete fabrication process from device design concept to working device can be completed in minutes without the need of expensive equipment such as laser, thermal lamination, and cleanroom. This rapid frabrication method was applied for design of a 3D hydrodynamic focusing device for synthesis of gold nanoparticles (AuNPs) as proof-of-concept. The fouling of AuNPs was prevented by means of a sheath flow. Different parameters such as flow rate and concentration of reagents were controlled to achieve AuNPs of various sizes. The sheet-based fabrication method offers a possibility to create complex microfluidic devices in a rapid, cheap and easy way.


2021 ◽  
pp. 088391152199640
Author(s):  
Renata Aquino de Carvalho ◽  
Valmir Vieira Rocha Júnior ◽  
Antonio José Felix Carvalho ◽  
Heloisa Sobreiro Selistre de Araújo ◽  
Mônica Rosas Costa Iemma ◽  
...  

Bone regenerative medicine (BRM) aims to overcome the limitations of conventional treatments for critical bone defects by developing therapeutic strategies, based on temporary bioactive substitutes, capable of stimulating, sustaining, and guiding tissue regeneration. The aim of this study was to validate the “proof of concept” of a cellularized bioactive scaffold and establish its potential for use in BRM. For this purpose, three-dimensional scaffolds of poly-(lactic acid) (PLA), produced by the additive manufacturing technique, were incorporated into a human platelet-rich plasma (PRP-h) fibrin matrix containing human infrapatellar fat pad mesenchymal stem cells (hIFPMSC). The scaffolds (PLA/finbrin-bioactive) were kept under ideal culture conditions in a medium free from fetal bovine serum and analyzed at 5 and 10 days by Scanning Electron Microscopy (SEM), Fourrier Transform Infrared (FTIR), Circular Dichroism and fluorescence microscopy. The results demonstrated the feasibility of obtaining a rigid, cytocompatible, and cellularized three-dimensional structure. In addition, PRP platelets and leukocytes were able to provide a bioactive environment capable of maintaining the viability of hIFPMSC into scaffolds. The results validate the concept of a customizable, bioactive, cellularized, and non-immunogenic strategy for application in BRM.


Author(s):  
P A Bracewell ◽  
U R Klement

Piping design for ‘revamp’ projects in the process industry requires the retrieval of large amounts of ‘as-built’ data from existing process plant installations. Positional data with a high degree of accuracy are required. Photogrammetry, the science of measurement from photographs, was identified in Imperial Chemical Industries plc (ICI) as a suitable tool for information retrieval. The mathematical formulation enabling the definition of three-dimensional positions from photographic information is described. The process of using ICI's photogrammetric system for the definition of complete objects such as structures and pipes is illustrated. The need for specialized photogrammetric software for design purposes is explained. A case study describing how the photogrammetric system has been applied is described and graphical outputs from this exercise are shown. It is concluded that this particular photogrammetric system has proved to be a cost effective and accurate tool for the retrieval of ‘as-built’ information.


2004 ◽  
Vol 21 (03) ◽  
pp. 279-295 ◽  
Author(s):  
ZHIHONG JIN ◽  
KATSUHISA OHNO ◽  
JIALI DU

This paper deals with the three-dimensional container packing problem (3DCPP), which is to pack a number of items orthogonally onto a rectangular container so that the utilization rate of the container space or the total value of loaded items is maximized. Besides the above objectives, some other practical constraints, such as loading stability, the rotation of items around the height axis, and the fixed loading (unloading) orders, must be considered for the real-life 3DCPP. In this paper, a sub-volume based simulated annealing meta-heuristic algorithm is proposed, which aims at generating flexible and efficient packing patterns and providing a high degree of inherent stability at the same time. Computational experiments on benchmark problems show its efficiency.


2015 ◽  
Vol 654 ◽  
pp. 213-217 ◽  
Author(s):  
Jan Grym ◽  
Roman Yatskiv ◽  
Ondřej Černohorský ◽  
María Verde ◽  
Jan Lorinčík ◽  
...  

We report on the electrophoretic deposition (EPD) of metal nanoparticles (NPs) prepared in reverse micelles on semiconductor substrates with the aim to fabricate sensitive Schottky-based hydrogen sensors with fast response and high degree of selectivity. We discuss the mechanism of NP monolayer formation and show which parameters are essential for the transition from three-dimensional to two-dimensional growth.


Sign in / Sign up

Export Citation Format

Share Document