Interaction of subway LIM vehicle with ballasted track in polygonal wheel wear development

2011 ◽  
Vol 27 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Ling Li ◽  
Xin-Biao Xiao ◽  
Xue-Song Jin
Keyword(s):  
Author(s):  
Jie Kou ◽  
Ji-min Zhang ◽  
He-chao Zhou ◽  
Cheng-ping Wang ◽  
Li-xia Sun
Keyword(s):  

2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 2013-2020
Author(s):  
Andreas Stollwitzer ◽  
Josef Fink ◽  
Tahira Malik

Wear ◽  
2018 ◽  
Vol 398-399 ◽  
pp. 56-68 ◽  
Author(s):  
Ulrich Spangenberg ◽  
Robert Desmond Fröhling ◽  
Pieter Schalk Els

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 313
Author(s):  
Cezary Kraśkiewicz ◽  
Artur Zbiciak ◽  
Kacper Wasilewski ◽  
Anna Al Sabouni-Zawadzka

The present paper is aimed at the analysis of under ballast mats (UBM) which are used in ballasted track structures as vibration isolators and to protect the ballast layer against fast degradation. The mats were tested in the laboratory and afterwards a novel 4-DoF mechanical model of the track structure with UBM was developed. The novelty of this study consists in the comparison of two testing procedures: a procedure based on the popular German standard DIN 45673-5 and a new European standard EN 17282, released in October 2020. Major discrepancies were demonstrated in the determined values of the static and dynamic characteristics using both approaches—especially in reference to the mats with higher stiffness.


2021 ◽  
Vol 28 (7) ◽  
pp. 2238-2256
Author(s):  
Jian-feng Mao ◽  
Yuan-jie Xiao ◽  
Zhi-wu Yu ◽  
Erol Tutumluer ◽  
Zhi-hui Zhu

2019 ◽  
Vol 71 (2) ◽  
pp. 284-294 ◽  
Author(s):  
AiHua Zhu ◽  
Si Yang ◽  
Qiang Li ◽  
JianWei Yang ◽  
Xi Li ◽  
...  

PurposeThe purpose of this paper is to study the wear evolution of metro wheels under the conditions of different track sequences, track composition and vehicle load and then to predict wheel wear and to guide its maintenance.MethodologyBy using the SIMPACK and MATLAB software, numerical simulation analysis of metro wheel wear is carried out based on Hertz theory, the FASTSIM algorithm and the Archard model. First of all, the vehicle dynamics model is established to calculate the motion relationship and external forces of wheel-rail in the SIMPACK software. Then, the normal force of wheel-rail is solved based on Hertz theory, and the tangential force of wheel-rail is calculated based on the FASTSIM algorithm through the MATLAB software. Next, in the MATLAB software, the wheel wear is calculated based on the Archard model, and a new wheel profile is obtained. Finally, the new wheel profile is re-input into the vehicle system dynamics model in the SIMPACK software to carry out cyclic calculation of wear.FindingsThe results show that the setting order of different curves has an obvious influence on wear when the proportion of the straight track and the curve is fixed. With the increase in running mileage, the severe wear zone is shifted from tread to flange root under the condition of the sequence-type track, but the wheel wear distribution is basically stable for the unit-type track, and their wear growth rates become closer. In the tracks with different straight-curved ratio, the more proportion the curved tracks occupy, the closer the severe wear zone is shifted to flange root. At the same time, an increase in weight of the vehicle load will aggravate the wheel wear, but it will not change the distribution of wheel wear. Compared with the measured data of one city B type metro in China, the numerical simulation results of wheel wear are nearly the same with the measured data.Practical implicationsThese results will be helpful for metro tracks planning and can predict the trend of wheel wear, which has significant importance for the vehicle to do the repair operation. At the same time, the security risks of the vehicle are decreased economically and effectively.Originality/valueAt present, many scholars have studied the influence of metro tracks on wheel wear, but mainly focused on a straight line or a certain radius curve and neglected the influence of track sequence and track composition. This study is the first to examine the influence of track sequence on metro wheel wear by comparing the sequence-type track and unit-type track. The results show that the track sequence has a great influence on the wear distribution. At the same time, the influence of track composition on wheel wear is studied by comparing different straight-curve ratio tracks; therefore, wheel wear can be predicted integrally under different track conditions.


Sign in / Sign up

Export Citation Format

Share Document