Band gap analysis of periodic structures based on cell experimental frequency response functions (FRFs)

2018 ◽  
Vol 35 (1) ◽  
pp. 156-173
Author(s):  
Li-Jie Wu ◽  
Han-Wen Song
2018 ◽  
Vol 211 ◽  
pp. 06005
Author(s):  
Tiago Silva ◽  
João Pereira

In the field of structural dynamics is common to predict the behaviour of a structure regarding structural modifications. In this context, the frequency based substructuring method is well-known to perform structural modifications based on the coupling of structures. This process gives the possibility to perform the study of a structure at the level of its components and then assess the response of the coupled system. In practice, it is impossible to attain an experimental complete response model, although one can simulate all the responses of a structure using numerical models. Hence, the substructuring process can be enhanced by the combined use of experimental and numerical responses, as it was demonstrated using numerically obtained frequency response functions. This work presents the enhancement of the frequency based substructuring method using a method to expand experimental frequency response functions over the entire set of degrees of freedom in a finite element model. This expansion process, known as modified Kidder’s method, considers that if one can only measure translations due to exciting force, it is possible to obtain the complete response model, including the rotational frequency response functions due to exciting moments. The combined use of the frequency based substructuring and the modified Kidder’s methods has several advantages, as it avoids modal identification or residual compensation. To evaluate the performance of the proposed procedure a numerical example of a beam structure is presented, and its results are discussed.


2018 ◽  
Vol 22 (4) ◽  
pp. 935-947 ◽  
Author(s):  
Qianhui Pu ◽  
Yu Hong ◽  
Liangjun Chen ◽  
Shili Yang ◽  
Xikun Xu

This article evaluates the use of experimental frequency response functions for damage detection and quantification of a concrete beam with the help of model updating theory. The approach is formulated as an optimization problem that intends to adjust the analytical frequency response functions from a benchmark finite element model to match with the experimental frequency response functions from the damaged structure. Neither model expansion nor reduction is needed because the individual analytical frequency response function formulation is derived. Unlike the commonly used approaches that assume zero damping or viscous damping for simplicity, a more realistic hysteretic damping model is considered in the analytical frequency response function formulation. The accuracy and anti-noise ability of the proposed approach are first verified by the numerical simulations. Next, a laboratory reinforced concrete beam with different levels of damage is utilized to investigate the applicability in an actual test. The results show successful damage quantification and damping updating of the beam by matching the analytical frequency response functions with the experimental frequency response functions in each damage scenario.


Author(s):  
W. Schünemann ◽  
R. Schelenz ◽  
G. Jacobs ◽  
W. Vocaet

AbstractThe aim of a transfer path analysis (TPA) is to view the transmission of vibrations in a mechanical system from the point of excitation over interface points to a reference point. For that matter, the Frequency Response Functions (FRF) of a system or the Transmissibility Matrix is determined and examined in conjunction with the interface forces at the transfer path. This paper will cover the application of an operational TPA for a wind turbine model. In doing so the path contribution of relevant transfer paths are made visible and can be optimized individually.


1998 ◽  
Vol 120 (2) ◽  
pp. 509-516 ◽  
Author(s):  
J. A. Morgan ◽  
C. Pierre ◽  
G. M. Hulbert

This paper demonstrates how to calculate Craig-Bampton component mode synthesis matrices from measured frequency response functions. The procedure is based on a modified residual flexibility method, from which the Craig-Bampton CMS matrices are recovered, as presented in the companion paper, Part I (Morgan et al., 1998). A system of two coupled beams is analyzed using the experimentally-based method. The individual beams’ CMS matrices are calculated from measured frequency response functions. Then, the two beams are analytically coupled together using the test-derived matrices. Good agreement is obtained between the coupled system and the measured results.


Author(s):  
S. Y. Chen ◽  
M. S. Ju ◽  
Y. G. Tsuei

Abstract A frequency-domain technique to extract the normal mode from the measurement data for highly coupled structures is developed. The relation between the complex frequency response functions and the normal frequency response functions is derived. An algorithm is developed to calculate the normal modes from the complex frequency response functions. In this algorithm, only the magnitude and phase data at the undamped natural frequencies are utilized to extract the normal mode shapes. In addition, the developed technique is independent of the damping types. It is only dependent on the model of analysis. Two experimental examples are employed to illustrate the applicability of the technique. The effects due to different measurement locations are addressed. The results indicate that this technique can successfully extract the normal modes from the noisy frequency response functions of a highly coupled incomplete system.


Sign in / Sign up

Export Citation Format

Share Document