Cell Proliferation of Cultured Human Cancer Cells are Affected by the Elevated Tumor Pressures that Exist In Vivo

2005 ◽  
Vol 33 (9) ◽  
pp. 1270-1280 ◽  
Author(s):  
Gene R. DiResta ◽  
Saminathan S. Nathan ◽  
Mark W. Manoso ◽  
Jorge Casas-Ganem ◽  
Chris Wyatt ◽  
...  
2021 ◽  
Vol 22 (16) ◽  
pp. 8372
Author(s):  
Ana María Zárate ◽  
Christian Espinosa-Bustos ◽  
Simón Guerrero ◽  
Angélica Fierro ◽  
Felipe Oyarzún-Ampuero ◽  
...  

The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.


2001 ◽  
Vol 15 (3) ◽  
pp. 314-318 ◽  
Author(s):  
C. N. Gutt ◽  
Z. G. Kim ◽  
D. Hollander ◽  
T. Bruttel ◽  
M. Lorenz

2011 ◽  
Author(s):  
Jessica Kandel ◽  
Dimitris Anastassiou ◽  
Viktoria Rumjantseva ◽  
Wei-yi Cheng ◽  
Jianzhong Huang ◽  
...  

2019 ◽  
Vol 71 (1) ◽  
pp. 165-180 ◽  
Author(s):  
Tomasz Kowalczyk ◽  
Przemysław Sitarek ◽  
Ewa Skała ◽  
Monika Toma ◽  
Marzena Wielanek ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Yichao Fan ◽  
Jiao Yue ◽  
Mengtao Xiao ◽  
Han Han-Zhang ◽  
Yao Vickie Wang ◽  
...  

Tumor suppressor p53 prevents cell transformation by inducing apoptosis and other responses. Homozygous TP53 deletion occurs in various types of human cancers for which no therapeutic strategies have yet been reported. TCGA database analysis shows that the TP53 homozygous deletion locus mostly exhibits co-deletion of the neighboring gene FXR2, which belongs to the Fragile X gene family. Here, we demonstrate that inhibition of the remaining family member FXR1 selectively blocks cell proliferation in human cancer cells containing homozygous deletion of both TP53 and FXR2 in a collateral lethality manner. Mechanistically, in addition to its RNA-binding function, FXR1 recruits transcription factor STAT1 or STAT3 to gene promoters at the chromatin interface and regulates transcription thus, at least partially, mediating cell proliferation. Our study anticipates that inhibition of FXR1 is a potential therapeutic approach to targeting human cancers harboring TP53 homozygous deletion.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 144 ◽  
Author(s):  
Zaid Maayah ◽  
Ti Zhang ◽  
Marcus Forrest ◽  
Samaa Alrushaid ◽  
Michael Doschak ◽  
...  

Doxorubicin (DOX) is a very potent and effective anticancer agent. However, the effectiveness of DOX in osteosarcoma is usually limited by the acquired drug resistance. Recently, Vitamin D (Vit-D) was shown to suppress the growth of many human cancer cells. Taken together, we synthesized DOX-Vit D by conjugating Vit-D to DOX in order to increase the delivery of DOX into cancer cells and mitigate the chemoresistance associated with DOX. For this purpose, MG63 cells were treated with 10 µM DOX or DOX-Vit D for 24 h. Thereafter, MTT, real-time PCR and western blot analysis were used to determine cell proliferation, genes and proteins expression, respectively. Our results showed that DOX-Vit D, but not DOX, significantly elicited an apoptotic signal in MG63 cells as evidenced by induction of death receptor, Caspase-3 and BCLxs genes. Mechanistically, the DOX-Vit D-induced apoptogens were credited to the activation of p-JNK and p-p38 signaling pathway and the inhibition of proliferative proteins, p-Akt and p-mTOR. Our findings propose that DOX-Vit D suppressed the growth of MG63 cells by inducing apoptosis while inhibiting cell survival and proliferative signaling pathways. DOX-Vit D may serve as a novel drug delivery approach to potentiate the delivery of DOX into cancer cells.


Endocrinology ◽  
2019 ◽  
Vol 160 (7) ◽  
pp. 1600-1612 ◽  
Author(s):  
Andrew V Schally ◽  
Xianyang Zhang ◽  
Renzhi Cai ◽  
Joshua M Hare ◽  
Riccarda Granata ◽  
...  

Abstract In this article, we briefly review the identification of GHRH, provide an abridged overview of GHRH antagonists, and focus on studies with GHRH agonists. Potent GHRH agonists of JI and MR class were synthesized and evaluated biologically. Besides the induction of the release of pituitary GH, GHRH analogs promote cell proliferation and exert stimulatory effects on various tissues, which express GHRH receptors (GHRH-Rs). A large body of work shows that GHRH agonists, such as MR-409, improve pancreatic β-cell proliferation and metabolic functions and facilitate engraftment of islets after transplantation in rodents. Accordingly, GHRH agonists offer a new therapeutic approach to treating diabetes. Various studies demonstrate that GHRH agonists promote repair of cardiac tissue, producing improvement of ejection fraction and reduction of infarct size in rats, reduction of infarct scar in swine, and attenuation of cardiac hypertrophy in mice, suggesting clinical applications. The presence of GHRH-Rs in ocular tissues and neuroprotective effects of GHRH analogs in experimental diabetic retinopathy indicates their possible therapeutic applications for eye diseases. Other effects of GHRH agonists, include acceleration of wound healing, activation of immune cells, and action on the central nervous system. As GHRH might function as a growth factor, we examined effects of GHRH agonists on tumors. In vitro, GHRH agonists stimulate growth of human cancer cells and upregulate GHRH-Rs. However, in vivo, GHRH agonists inhibit growth of human cancers xenografted into nude mice and downregulate pituitary and tumoral GHRH-Rs. Therapeutic applications of GHRH analogs are discussed. The development of GHRH analogs should lead to their clinical use.


2009 ◽  
Vol 8 (1) ◽  
pp. 11 ◽  
Author(s):  
Keqiang Zhang ◽  
Shuya Hu ◽  
Jun Wu ◽  
Linling Chen ◽  
Jianming Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document