Investigation of CO2 capture using acetate-based ionic liquids incorporated into exceptionally porous metal–organic frameworks

Adsorption ◽  
2019 ◽  
Vol 25 (4) ◽  
pp. 675-692 ◽  
Author(s):  
Mohanned Mohamedali ◽  
Amr Henni ◽  
Hussameldin Ibrahim
Author(s):  
Ilich A. Ibarra ◽  
Eduardo González-Zamora ◽  
Alejandro Islas-Jácome ◽  
Alfredo López-Olvera ◽  
Vanessa del C. Cotlame-Salinas

Metal-organic frameworks (MOFs) have become the most promising molecular sponges to capture gases from the greenhouse effect, e.g. CO2, due to various desirable features such as tuneable pore shape, size...


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Ioanna Christodoulou ◽  
Tom Bourguignon ◽  
Xue Li ◽  
Gilles Patriarche ◽  
Christian Serre ◽  
...  

In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications.


Author(s):  
Dechao Wang ◽  
Yangyang Xin ◽  
Xiaoqian Li ◽  
Hailong Ning ◽  
Yudeng Wang ◽  
...  

2008 ◽  
Vol 130 (6) ◽  
pp. 1833-1835 ◽  
Author(s):  
Farid Nouar ◽  
Jarrod F. Eubank ◽  
Till Bousquet ◽  
Lukasz Wojtas ◽  
Michael J. Zaworotko ◽  
...  

2021 ◽  
pp. 122446
Author(s):  
Ilango Aswin Kumar ◽  
Antonysamy Jeyaseelan ◽  
Natrayasamy Viswanathan ◽  
Mu Naushad ◽  
Artur J.M. Valente

Sign in / Sign up

Export Citation Format

Share Document