scholarly journals Ranking kinematics for revising by contextual information

Author(s):  
Meliha Sezgin ◽  
Gabriele Kern-Isberner ◽  
Christoph Beierle

AbstractProbability kinematics is a leading paradigm in probabilistic belief change. It is based on the idea that conditional beliefs should be independent from changes of their antecedents’ probabilities. In this paper, we propose a re-interpretation of this paradigm for Spohn’s ranking functions which we call Generalized Ranking Kinematics as a new principle for iterated belief revision of ranking functions by sets of conditional beliefs with respect to their specific subcontext. By taking into account semantical independencies, we can reduce the complexity of the revision task to local contexts. We show that global belief revision can be set up from revisions on the local contexts via a merging operator. Furthermore, we formalize a variant of the Ramsey-Test based on the idea of local contexts which connects conditional and propositional revision in a straightforward way. We extend the belief change methodology of c-revisions to strategic c-revisions which will serve as a proof of concept.

10.29007/3q8l ◽  
2018 ◽  
Author(s):  
Gabriele Kern-Isberner ◽  
Tanja Bock ◽  
Kai Sauerwald ◽  
Christoph Beierle

Research on iterated belief change has focussed mostly on belief revision, only few papers have addressed iterated belief contraction. Most prominently, Darwiche and Pearl published seminal work on iterated belief revision the leading paradigm of which is the so-called principle of conditional preservation. In this paper, we use this principle in a thoroughly axiomatized form to develop iterated belief contraction operators for Spohn's ranking functions. We show that it allows for setting up constructive approaches to tackling the problem of how to contract a ranking function by a proposition or a conditional, respectively, and that semantic principles can also be derived from it for the purely qualitative case.


Author(s):  
Jake Chandler ◽  
Richard Booth

The belief revision literature has largely focussed on the issue of how to revise one’s beliefs in the light of information regarding matters of fact. Here we turn to an important but comparatively neglected issue: How to model agents capable of acquiring information regarding which rules of inference (‘Ramsey Test conditionals’) they ought to use in reasoning about these facts. Our approach to this second question of so-called ‘conditional revision’ is distinctive insofar as it abstracts from the controversial details of how the address the first. We introduce a ‘plug and play’ method for uniquely extending any iterated belief revision operator to the conditional case. The flexibility of our approach is achieved by having the result of a conditional revision by a Ramsey Test conditional (‘arrow’) determined by that of a plain revision by its corresponding material conditional (‘hook’). It is shown to satisfy a number of new constraints that are of independent interest.


2015 ◽  
Vol 53 ◽  
pp. 779-824 ◽  
Author(s):  
Aaron Hunter ◽  
James Delgrande

We consider the iterated belief change that occurs following an alternating sequence of actions and observations. At each instant, an agent has beliefs about the actions that have occurred as well as beliefs about the resulting state of the world. We represent such problems by a sequence of ranking functions, so an agent assigns a quantitative plausibility value to every action and every state at each point in time. The resulting formalism is able to represent fallible belief, erroneous perception, exogenous actions, and failed actions. We illustrate that our framework is a generalization of several existing approaches to belief change, and it appropriately captures the non-elementary interaction between belief update and belief revision.


Author(s):  
Marlo Souza ◽  
Álvaro Moreira ◽  
Renata Vieira

AGM’s belief revision is one of the main paradigms in the study of belief change operations. In this context, belief bases (prioritised bases) have been largely used to specify the agent’s belief state - whether representing the agent’s ‘explicit beliefs’ or as a computational model for her belief state. While the connection of iterated AGM-like operations and their encoding in dynamic epistemic logics have been studied before, few works considered how well-known postulates from iterated belief revision theory can be characterised by means of belief bases and their counterpart in dynamic epistemic logic. This work investigates how priority graphs, a syntactic representation of preference relations deeply connected to prioritised bases, can be used to characterise belief change operators, focusing on well-known postulates of Iterated Belief Change. We provide syntactic representations of belief change operators in a dynamic context, as well as new negative results regarding the possibility of representing an iterated belief revision operation using transformations on priority graphs.


2010 ◽  
Vol 3 (2) ◽  
pp. 228-246 ◽  
Author(s):  
KRISTER SEGERBERG

The success of the AGM paradigm—the theory of belief change initiated by Alchourrón, Gärdenfors, and Makinson—is remarkable, as even a quick look at the literature it has generated will testify. But it is also remarkable, at least in hindsight, how limited was the original effort. For example, the theory concerns the beliefs of just one agent; all incoming information is accepted; belief change is uniquely determined by the new information; there is no provision for nested beliefs. And perhaps most surprising: there is no analysis of iterated change.In this paper it is that last restriction that is at issue. Our medium of study is dynamic doxastic logic (DDL). The success of the AGM paradigm The particular contribution of the paper is detailed completeness proofs for three dynamic doxastic logics of iterated belief revision.The problem of extending the AGM paradigm to include iterated change has been discussed for years, but systematic discussions have appeared only recently (see Segerberg, 2007 and forthcoming, but also van Benthem, 2007; Rott, 2006; Zvesper, 2007).


2019 ◽  
Vol 11 (17) ◽  
pp. 4679
Author(s):  
Carina Anderson ◽  
Robert Passey ◽  
Jeremy De Valck ◽  
Rakibuzzaman Shah

This paper reports on a case study of the community group Zero Emissions Noosa, whose goal is for 100% renewable electricity in the Noosa Shire (Queensland, Australia) by 2026. Described within this paper are the processes used by Zero Emissions Noosa to set up their zero emissions plan, involving community engagement and the use of an external consultant. The external consultant was employed to produce a detailed report outlining how to successfully achieve zero emissions from electricity in the Noosa Shire by 2026. This paper explains how and why the community engagement process used to produce the report was just as important as the outcomes of the report itself. Modeling was undertaken, and both detailed and contextual information was provided. Inclusion of the community in developing the scenario parameters for the modeling had a number of benefits including establishing the context within which their actions would occur and focusing their efforts on options that were technically feasible, financially viable and within their capabilities to implement. This provided a focal point for the community in calling meetings and contacting stakeholders. Rather than prescribing a particular course of action, it also resulted in a toolbox of options, a range of possible solutions that is flexible enough to fit into whatever actions are preferred by the community. The approach and outcomes discussed in this paper should, therefore, be useful to other communities with similar carbon emission reduction goals.


Author(s):  
SHENG-LIN CHOU ◽  
WEN-HSIANG TSAI

The problem of handwritten Chinese character recognition is solved by matching character stroke segments using an iteration scheme. Length and orientation similarity properties, and coordinate overlapping ratios are used to define a measure of similarity between any two stroke segments. The initial measures of similarity between the stroke segments of the input and template characters are used to set up a match network which includes all the match relationships between the input and template stroke segments. Based on the concept of at-most-one to one mapping an iteration scheme is employed to adjust the match relationships, using the contextual information implicitly contained in the match network, so that the match relationships can get into a stable state. From the final match relationships, matched stroke-segment pairs are determined by a mutually-best match strategy and the degree of similarity between the input and each template character is evaluated accordingly. Certain structure information of Chinese characters is also used in the evaluation process. The experimental results show that the proposed approach is effective. For recognition of Chinese characters written by a specific person, the recognition rate is about 96%. If the characters of the first three ranks are checked in counting the recognition rate, the rate rises to 99.6%.


Author(s):  
Willem Vos ◽  
Petter Norli ◽  
Emilie Vallee

This paper describes a novel technique for the detection of cracks in pipelines. The proposed in-line inspection technique has the ability to detect crack features at random angles in the pipeline, such as axial, circumferential, and any angle in between. This ability is novel to the current ILI technology offering and will also add value by detecting cracks in deformed pipes (i.e. in dents), and cracks associated with the girth weld (mid weld cracks, rapid cooling cracks and cracks parallel to the weld). Furthermore, the technology is suitable for detection of cracks in spiral welded pipes, both parallel to the spiral weld as well as perpendicular to the weld. Integrity issues around most features described above are not addressed with ILI tools, often forcing operators to perform hydrostatic tests to ensure pipeline safety. The technology described here is based on the use of wideband ultrasound inline inspection tools that are already in operation. They are designed for the inspection of structures operating in challenging environments such as offshore pipelines. Adjustments to the front-end analog system and data collection from a grid of transducers allow the tools to detect cracks in any orientation in the line. Description of changes to the test set-up are presented as well as the theoretical background behind crack detection. Historical development of the technology will be presented, such as early laboratory testing and proof of concept. The proof of concept data will be compared to the theoretical predictions. A detailed set of results are presented. These are from tests that were performed on samples sourced from North America and Europe which contain SCC features. Results from ongoing testing will be presented, which involved large-scale testing on SCC features in gas-filled pipe spools.


Author(s):  
LAURENT PERRUSSEL ◽  
JEAN-MARC THÉVENIN

This paper focuses on the features of belief change in a multi-agent context where agents consider beliefs and disbeliefs. Disbeliefs represent explicit ignorance and are useful to prevent agents to entail conclusions due to their ignorance. Agents receive messages holding information from other agents and change their belief state accordingly. An agent may refuse to adopt incoming information if it prefers its own (dis)beliefs. For this, each agent maintains a preference relation over its own beliefs and disbeliefs in order to decide if it accepts or rejects incoming information whenever inconsistencies occur. This preference relation may be built by considering several criteria such as the reliability of the sender of statements or temporal aspects. This process leads to non-prioritized belief revision. In this context we first present the * and − operators which allow an agent to revise, respectively contract, its belief state in a non-prioritized way when it receives an incoming belief, respectively disbelief. We show that these operators behave properly. Based on this we then illustrate how the receiver and the sender may argue when the incoming (dis)belief is refused. We describe pieces of dialog where (i) the sender tries to convince the receiver by sending arguments in favor of the original (dis)belief and (ii) the receiver justifies its refusal by sending arguments against the original (dis)belief. We show that the notion of acceptability of these arguments can be represented in a simple way by using the non-prioritized change operators * and −. The advantage of argumentation dialogs is twofold. First whenever arguments are acceptable the sender or the receiver reconsider its belief state; the main result is an improvement of the reconsidered belief state. Second the sender may not be aware of some sets of rules which act as constraints to reach a specific conclusion and discover them through argumentation dialogs.


Sign in / Sign up

Export Citation Format

Share Document