Nutrient release coefficient: a proposed batch reactor assay to determine the elemental composition of aquaponic nutrient solutions

Author(s):  
Brunno da Silva Cerozi ◽  
Josué Wenceslau de Oliveira Neto ◽  
Roger Abraão Ribeiro Cardeal Dias Leonel ◽  
Angélica Priscila do Carmo Alves
1997 ◽  
Vol 20 (7-8) ◽  
pp. 911-923 ◽  
Author(s):  
G. De Rijck ◽  
E. Schrevens

Author(s):  
G. N. Kiriro ◽  
I. W. Mwangi ◽  
S. Swaleh ◽  
R. Wanjau ◽  
P. Mbugua ◽  
...  

Loss of available land for plant growth has made other options that allow an efficient use of water and fertilizers which increase crop quality and productivity. Some systems such as hydroponics need a constant air and fluid circulation as well as nutrient refill that put strain on the cost of production. Without such a system, many growers dump the nutrient solutions at short intervals which affect the environment negatively. Due to such shortcoming, there is a need therefore to come up with a method that will address such challenges. This study reports on the growth of some selected plants on nutrient anchored modified polystyrene material. The material was characterized using FTIR, NMR, FAAS and XPS. Nutrient release parameters were investigated by differential pulse anodic stripping voltammetry at a glassy carbon electrode. Available spaces between the solid particles provided a sufficient supply of air to the plant roots. Mineral release increased with decrease in pH up to a value of 4.0 at which 90% of the nutrient was available for plant uptake. The anchoring of minerals was by complexation whose stability constant was found to be 1.99×1014. This implies that the non biodegradable material has a potential application as a fertilizer and media for plants growth.


Author(s):  
A. R. Crooker ◽  
M. C. Myers ◽  
T. L. Beard ◽  
E. S. Graham

Cell culture systems have become increasingly popular as a means of screening toxic agents and studying toxic mechanisms of drugs and other chemicals at the cellular and subcellular levels. These in vitro tests can be conducted rapidly in a broad range of relevant mammalian culture systems; a variety of biological and biochemical cytotoxicity endpoints can be examined. The following study utilized human keratinocytes to evaluate the relative cytotoxicities of nitrofurazone (NF) and silver sulfadiazine (SS), the active ingredients of FURACIN(R) Topical Cream and SILVADENE(R) Cream, respectively. These compounds are anti-infectives used in the treatment of burn patients. Cell ultrastructure and elemental composition were utilized as cytotoxicity endpoints.Normal Human Epidermal Keratinocytes (HK) were prepared from the EpiPackTM culture system (Clonetics Corporation, Boulder, CO). For scanning electron microscopy (SEM) and transmission electron microscopy (TEM), cells were seeded on sterile 35 mm Falcon plastic dishes; for elemental microanalysis, cells were plated on polished pyrolytic carbon discs (E. Fullam, Latham, NY) placed in the culture dishes.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


2004 ◽  
Author(s):  
J. Schnackenbeck ◽  
S. Erdal ◽  
T. Schoonover ◽  
L. Conroy

2018 ◽  
Vol 18 (3) ◽  
pp. 81-91 ◽  
Author(s):  
C. Lalhriatpuia

Nanopillars-TiO2 thin films was obtained on a borosilicate glass substrate with (S1) and without (S2) polyethylene glycol as template. The photocatalytic behaviour of S1 and S2 thin films was assessed inthe degradation of methylene blue (MB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the SEM, XRD, FTIR and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data confirmed that the TiO2 particles are in its anatase mineral phase. The SEM and AFM images indicated the catalyst is composed with nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of MB was well studied at wide range of physico-chemical parameters. The effect of solution pH (pH 4.0 to 10.0) and MB initial concentration (1.0 to 10.0 mg/L) was extensively studied and the effect of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of MB was demonstrated. The maximum percent removal of MB was observed at pH 8.0 beyond which it started decreasing and a low initial concentration of the pollutant highly favoured the photocatalytic degradation using thin films and the presence of several interfering ions diminished the photocatalytic activity of thin films to some extent. The overall photocatalytic activity was in the order: S2 > S1 > UV. The photocatalytic degradation of MB was followed the pseudo-first-order rate kinetics. The mineralization of MB was studied with total organic carbon measurement using the TOC (total organic carbon) analysis.


2016 ◽  
Author(s):  
Andreas Roschger ◽  
Paul Roschger ◽  
Felix Repp ◽  
Wolfgang Wagermaier ◽  
Richard Weinkamer ◽  
...  

2019 ◽  
Vol 2 (2) ◽  
pp. 21
Author(s):  
Lindawati Lindawati

Reduction of food rations and shortages is one of the impacts of the increasing human population. Food sector industries then try to cope with the fast growing number of customers. Agribusiness sector gains its popularity in these recent years, including pig farm. The increase trend of animal farming industry is likely to bring increasing pollution problem unless effective treatment methods are used. The main problems related to the pig farm include odor nuisance and pig manure disposal. The existing land application of piggery wastewater is the traditional way to discharge the wastewater. This may yield in land and water contamination, due to the accumulation of unused nutrients by crop plant. A case study of a large commercial pig farm from Australia is proposed to apply in smaller scale in Indonesia. Operational strategies for the small-scale SBR (Sequencing Batch Reactor) treating piggery effluent were developed based on lab-scale experiments. Due to SBR characteristics, which are money-saving and space-saving, it is very suitable to be applied in urban area. An economic evaluation was made of various process options. The cost estimation showed that SBR is a cost effective process, allowing operational batches to be adjusted to reduce unnecessary aeration cost. A reduction in the aeration cost was achieved by shortening the batch time from 24-h to 8-h. A comparison of three different SBR options showed that smaller size reactors could be more flexible and cost effective when compared with the larger ones.


2019 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Lindawati Lindawati

Sebuah Sequencing Batch Reactor (SBR) digunakan untuk mengevaluasi peranan Biochemical Oxygen Demand (BOD) biosensor dalam proses optimasi proses pengolahan nutrien karbon, nitrogen dan fosfat. Hasil penelitian menunjukkan bahwa BOD biosensor dapat dipergunakan untuk penentuan karbon organik, sehingga reduksi siklus SBR dapat dilakukan dan efisiensi proses meningkat. Pola konsumsi karbon organik ditemukan dengan adanya ‘tanda diam’ pada fase anoksik/ anaerobik, di mana dari tanda ini, fase aerobik dapat segera dimulai. Reduksi durasi siklus SBR dari 8 jam menjadi 4 jam meningkatkan efiesiensi pengolahan C, N dan P yang meningkat pula (hampir dua kali lebih tinggi).


2019 ◽  
Author(s):  
Víctor Gabriel Baldovino Medrano ◽  
Karen V. Caballero ◽  
Hernando Guerrero-Amaya

Turnover rates for glycerol esterification with acetic acid over Amberlyst-35 were measured under different temperatures, reactants and active sites concentrations, and catalyst particle sizes. Data were collected in a batch reactor. Experiments were done following a sequence of factorial experimental designs.


Sign in / Sign up

Export Citation Format

Share Document