Warm generalized cosmic Chaplygin gas inflation inspired by generalized dissipative coefficient

2017 ◽  
Vol 363 (1) ◽  
Author(s):  
Abdul Jawad ◽  
Shahzad Hussain
2013 ◽  
Vol 28 (22) ◽  
pp. 1350102 ◽  
Author(s):  
PRABIR RUDRA

In this paper, we investigate the role played by dark energy (DE) in the form of Generalized cosmic Chaplygin gas in an accelerating universe described by FRW cosmology. We have tried to describe the model from the theoretical point of view of a field, by introducing a scalar field ϕ and a self-interacting potential V(ϕ). The corresponding expressions for the field are obtained for the given model. Statefinder parameters have been used to characterize the dark energy model. Plots have been generated for characterizing different phases of universe diagrammatically and a comparative study is performed with the Modified Chaplygin gas model. As an outcome of the study, Generalized cosmic Chaplygin gas is identified as a much less constrained form of dark energy as compared to modified Chaplygin gas.


2016 ◽  
Vol 31 (10) ◽  
pp. 1650061 ◽  
Author(s):  
M. Sharif ◽  
Ayesha Sarwar

In this paper, we study thermal stability of an exotic fluid known as generalized cosmic Chaplygin gas (GCCG). We evaluate different physical parameters and examine how this fluid describes accelerated expansion of the universe. The stability conditions are formulated from thermodynamics which indicate that the respective fluid is stable adiabatically but it cannot be checked under isothermal condition.


2020 ◽  
Vol 35 (32) ◽  
pp. 2050268
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Kazuharu Bamba ◽  
Nadeem Azhar

By assuming the specific Chaplygin gas model, we study the reconstruction of warm inflation model with the help of tensor-to-scalar ratio [Formula: see text] and scalar spectral index [Formula: see text]. In this regard, we take flat Friedmann–Robertson–Walker (FRW) metric and discuss the general forms of dissipative coefficient [Formula: see text] as well as effective potential [Formula: see text] for two dissipative regimes i.e., the weak and strong. We use inflationary parameters such as slow-roll parameters, power spectrum of the curvature perturbation, tensor spectrum, spectral index, scalar-to-tensor ratio and Hubble parameter to find the generalized form of dissipative coefficient and effective potential. We discuss the results of dissipative coefficient and reconstructed potential in detail for the specific choice of tensor-to-scalar ratio [Formula: see text] and scalar spectral index [Formula: see text].


2014 ◽  
Vol 11 (08) ◽  
pp. 1450065 ◽  
Author(s):  
Ali R. Amani ◽  
B. Pourhassan

In this paper, we consider interacting closed string tachyon with generalized cosmic Chaplygin gas as a cosmological model of Universe. We obtained cosmological parameters and discuss about fixed point for stability analysis. We find appropriate conditions where the theory is stable.


Author(s):  
Ujjal Debnath

In this paper, we have considered the generalized cosmic Chaplygin gas (GCCG) in the background of Brans–Dicke (BD) theory and also assumed that the Universe is filled in GCCG, dark matter and radiation. To investigate the data fitting of model parameters, we have constrained the model using recent observations. Using [Formula: see text] minimum test, the best-fit values of the model parameters are determined by OHD+CMB+BAO+SNIa joint data analysis. We have drawn the contour figures for different confidence levels [Formula: see text], [Formula: see text] and [Formula: see text]. To examine the viability of the GCCG model in BD theory, we have also determined △AIC and △BIC using the information criteria (AIC and BIC). Graphically, we have analyzed the natures of the equation of state parameter and deceleration parameter for our best-fit values of model parameters. Also, we have studied the square speed of sound [Formula: see text] which lies in the interval [Formula: see text] for expansion of the Universe. So, our considered model is classically stable by considering the best-fit values of the model parameters due to the data analysis.


Author(s):  
Saba Qummer ◽  
Abdul Jawad ◽  
M. Younas

This paper is devoted to discuss the attractor solutions of inflationary Chaplygin gas models such as generalized Chaplygin gas, modified Chaplygin gas and generalized cosmic Chaplygin gas in the framework of Randall–Sundrum type II braneworld scenario. We investigate the inflationary parameters like scalar spectral index [Formula: see text], tensor to scalar ratio [Formula: see text], and the running of scalar index [Formula: see text] as a function of e-folding numbers [Formula: see text] in the presence of attractor: [Formula: see text]. We evaluate and reformulate these parameters under high energy condition. In this inflationary scenario, we develop [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] planes. We also found that these cosmological parameters and perturbation strongly agree with the recent Planck data 2018 for considered Chaplygin gas models instead of [Formula: see text] in case of generalized cosmic Chaplygin gas.


Sign in / Sign up

Export Citation Format

Share Document