Purification and visualization of encephalomyocarditisvirus synthesized by an in vitro protein expression system derived from mammalian cell extract

2012 ◽  
Vol 35 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Tominari Kobayashi ◽  
Jun Yukigai ◽  
Kosaku Ueda ◽  
Kodai Machida ◽  
Mamiko Masutani ◽  
...  
2007 ◽  
Vol 56 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Taro Masuda ◽  
Fumiyuki Goto ◽  
Toshihiro Yoshihara ◽  
Toru Ezure ◽  
Takashi Suzuki ◽  
...  

2020 ◽  
Vol 20 ◽  
pp. 04004
Author(s):  
Ahmad Pandu Satria Wiratama ◽  
Aris Haryanto

Newcastle Disease Virus (NDV) is an infectious disease that infect many kinds of wild and domesticated birds. Infection of NDV become a massive problem for poultry industry around the world especially in Indonesia. Vaccination is an effort to prevent the infection of NDV in poultry. NDV vaccine that used in Indonesia is a conventional life vaccine from LaSota and B1 strains. These type of vaccine is 21%-23% genetically distinct with the virus that spread in the environment. The antibody protection provided by the vaccine is not effective. Therefore, vaccination with new local NDV strain is needed to prevent the NDV infection in Indonesia. The previously study research reported that the local isolate of NDV from Kulon Progo, Indonesia has been isolated. Fusion (F) protein encoding gene that has been inserted into pBT7-N-His expression p lasmid which isolated from clone C-2a of E. coli, then it was expressed by the Cell-free protein expression system. The aim of this study was to confirm whether clone C-2a of E.coli carrying a recombinant plasmid pBT7-N-His-Fusion NDV and to express a recombinant F protein of NDV in-vitro from expression plasmid by cell-free protein expression system. This work started by detection of recombinant plasmid pBT7-N-His-Fusion NDV by DNA plasmid extraction followed by agarose gel electrophoresis. The recombinant F protein was in-vitro expressed by cell-free protein expression kit. The expressed F protein of NDV then was visualized by SDS-PAGE and Westernblott to analyse the expression of NDV recombinant F protein. It confirmed that clone C-2a of E. coli contained plasmid pBT7-N-His (4.001 bp) inserted by recombinant F protein of NDV gene (642 bp). The visualisation of expressed recombinant F protein by SDS-PAGE and Westernblott showed the NDV recombinant F protein was a specific protein fragment with molecular weight of 25,6 kDa..


Lab on a Chip ◽  
2009 ◽  
Vol 9 (23) ◽  
pp. 3391 ◽  
Author(s):  
N. Wu ◽  
Y. Zhu ◽  
S. Brown ◽  
J. Oakeshott ◽  
T. S. Peat ◽  
...  

2020 ◽  
Vol 25 (2) ◽  
pp. 69
Author(s):  
Aris Haryanto ◽  
Hevi Wihadmadyatami ◽  
Nastiti Wijayanti

The aim of this work was the in vitro expression of the recombinant fusion (F) protein of Newcastle disease virus (NDV).  The pBT7-N-His-Fusion-NDV expression plasmid which carries the recombinant F protein encoding gene from local Indonesian isolates, was prepared and transformed into E. coli BL21 (DE3). To detect bacterial colonies carrying the recombinant plasmid, a restriction endonuclease analysis was performed using the EcoRI restriction endonuclease. These results showed that the pBT-N-His-Fusion-NDV plasmid was successfully isolated with a size of 4.601 bp, and three recombinant plasmids carrying the gene coding for the recombinant F protein of NDV were obtained. Selected recombinant plasmids were then in vitro by using a cell-free protein expression system followed by visualization of the recombinant F protein on a 12% SDS-PAGE gel both by Coomassie Brilliant Blue staining and Western blotting. Recombinant F protein was successfully in vitro expressed by using a cell-free protein expression system as indicated by a specific single protein band with a molecular mass of 25.6 kDa.


2021 ◽  
Author(s):  
Christopher Deich ◽  
Brock Cash ◽  
Wakana Sato ◽  
Judee Sharon ◽  
Lauren Aufdembrink ◽  
...  

Efficient cell-free protein expression from linear DNA templates has remained a challenge primarily due to template degradation. Here we present a modified T7 RNA polymerase promoter that acts to significantly increase the yields of both transcription and translation within in vitro systems. The modified promoter, termed T7Max, recruits standard T7 RNA polymerase, so no protein engineering is needed to take advantage of this method. This technique could be used with any T7 RNA polymerase- based in vitro protein expression system. Unlike other methods of limiting linear template degradation, the T7Max promoter increases transcript concentration in a T7 transcription reaction, providing more mRNA for translation.


Sign in / Sign up

Export Citation Format

Share Document