Improvement of glutathione production by a metabolically engineered Yarrowia lipolytica strain using a small-scale optimization approach

Author(s):  
Diem T. H. Do ◽  
Patrick Fickers ◽  
Imen Ben Tahar
2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sara Benyakhlef ◽  
Ahmed Al Mers ◽  
Ossama Merroun ◽  
Abdelfattah Bouatem ◽  
Hamid Ajdad ◽  
...  

Reducing levelized electricity costs of concentrated solar power (CSP) plants can be of great potential in accelerating the market penetration of these sustainable technologies. Linear Fresnel reflectors (LFRs) are one of these CSP technologies that may potentially contribute to such cost reduction. However, due to very little previous research, LFRs are considered as a low efficiency technology. In this type of solar collectors, there is a variety of design approaches when it comes to optimizing such systems. The present paper aims to tackle a new research axis based on variability study of heliostat curvature as an approach for optimizing small and large-scale LFRs. Numerical investigations based on a ray tracing model have demonstrated that LFR constructors should adopt a uniform curvature for small-scale LFRs and a variable curvature per row for large-scale LFRs. Better optical performances were obtained for LFRs regarding these adopted curvature types. An optimization approach based on the use of uniform heliostat curvature for small-scale LFRs has led to a system cost reduction by means of reducing its receiver surface and height.


2017 ◽  
Vol 107 (04) ◽  
pp. 288-292
Author(s):  
M. Kück ◽  
J. Ehm ◽  
T. Hildebrandt ◽  
M. Prof. Freitag ◽  
E. M. Prof. Frazzon

Der Trend zur Fertigung individualisierter Produkte in kleinen Losgrößen erfordert hochflexible Produktionssysteme. Durch die damit verbundene Systemdynamik wird die Reihenfolgeplanung zu einem komplexen Planungsproblem. Der Beitrag beschreibt ein simulationsbasiertes Optimierungsverfahren, welches Echtzeitinformationen zur adaptiven Selektion geeigneter Prioritätsregeln verwendet. Das Potenzial des Ansatzes wird anhand eines Anwendungsfalls aus der Halbleiterindustrie demonstriert.   The trend to manufacturing individualized products in small-scale series demands highly flexible production systems. Because of the dynamic nature of such production systems, scheduling becomes a complex planning problem with frequent need for rescheduling. This article describes a data-driven simulation-based optimization approach using real-time information for adaptive job shop scheduling. The potential of the approach is demonstrated by a use case from semiconductor industry.


Solar Energy ◽  
2020 ◽  
Vol 202 ◽  
pp. 316-325
Author(s):  
Guiqiang Li ◽  
Yashun Lu ◽  
Qingdong Xuan ◽  
Yousef Golizadeh Akhlaghi ◽  
Gang Pei ◽  
...  

2014 ◽  
Vol 14 (4) ◽  
pp. 935-946 ◽  
Author(s):  
Anna Czech ◽  
Malwina Merska ◽  
Katarzyna Ognik

Abstract The aim of this study was to determine immunological and biochemical blood indicators of turkey hens administered feed mixtures with 3 or 6% of Yarrowia lipolytica strain yeast as a dietary nutrient. The experiment was carried out on 240 turkey hens, aged from 1 to 16 weeks. The hens were randomly assigned to 3 experimental groups of 80 birds. Group I served as a control (K) and did not receive any experimental compounds. The turkey hens from experimental groups (YL3, YL6) were administered dried Yarrowia lipolytica yeast in two doses: 3% (YL3) and 6% (YL6) in feed mixtures. The study showed that the addition of Yarrowia lipolytica yeast in a dose of 3% but mainly in a dose of 6% stimulated the body’s immune defence mechanisms, which was evidenced by the increase in plasma lysozyme, % KF, IF, and reduction of monocyte ratio H/L in turkey hens. The advantage of using Yarrowia lipolytica in the nutrition of turkey hens was also a decrease in the content of blood indicators of lipid peroxidation such as CHOL, TG and LDL-cholesterol fraction, and an increase in the percentage of HDL-cholesterol fraction. The use of yeast component in the feeding of turkey hens affected the health status of birds and contributed to proper (not deviating from the reference values) biochemical indicators of metabolism.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1154
Author(s):  
Chao-Chih Lin ◽  
Hund-Der Yeh

This research introduces an inverse transient-based optimization approach to automatically detect potential faults, such as leaks, partial blockages, and distributed deteriorations, within pipelines or a water distribution network (WDN). The optimization approach is named the Pipeline Examination Ordinal Symbiotic Organism Search (PEOS). A modified steady hydraulic model considering the effects of pipe aging within a system is used to determine the steady nodal heads and piping flow rates. After applying a transient excitation, the transient behaviors in the system are analyzed using the method of characteristics (MOC). A preliminary screening mechanism is adopted to sift the initial organisms (solutions) to perform better to reduce most of the unnecessary calculations caused by incorrect solutions within the PEOS framework. Further, a symbiotic organism search (SOS) imitates symbiotic relationship strategies to move organisms toward the current optimal organism and eliminate the worst ones. Two experiments on leak and blockage detection in a single pipeline that have been presented in the literature were used to verify the applicability of the proposed approach. Two hypothetical WDNs, including a small-scale and large-scale system, were considered to validate the efficiency, accuracy, and robustness of the proposed approach. The simulation results indicated that the proposed approach obtained more reliable and efficient optimal results than other algorithms did. We believe the proposed fault detection approach is a promising technique in detecting faults in field applications.


2018 ◽  
Vol 11 (1) ◽  
pp. 66 ◽  
Author(s):  
Tuan-Viet Hoang ◽  
Pouya Ifaei ◽  
Kijeon Nam ◽  
Jouan Rashidi ◽  
Soonho Hwangbo ◽  
...  

This study proposed an optimal hybrid renewable energy system (HRES) to sustainably meet the dynamic electricity demand of a membrane bioreactor. The model-based HRES consists of solar photovoltaic panels, wind turbines, and battery banks with grid connectivity. Three scenarios, 101 sub-scenarios, and three management cases were defined to optimally design the system using a novel dual-scale optimization approach. At the system scale, the power-pinch analysis was applied to minimize both the size of components and the outsourced needed electricity (NE) from Vietnam’s electrical grid. At a local-scale, economic and environmental models were integrated, and the system was graphically optimized using a novel objective function, combined enviro-economic costs (CEECs). The results showed that the optimal CEECs were $850,710/year, $1,030,628/year, and $1,693,476/year for the management cases under good, moderate, and unhealthy air qualities, respectively. The smallest CEEC was obtained when 47% of the demand load of the membrane bioreactor was met using the HRES and the rest was supplied by the grid, resulting in 6,800,769 kg/year of CO2 emissions.


2019 ◽  
Vol 7 (10) ◽  
pp. 472 ◽  
Author(s):  
Larissa Ribeiro Ramos Tramontin ◽  
Kanchana Rueksomtawin Kildegaard ◽  
Suresh Sudarsan ◽  
Irina Borodina

Astaxanthin is a high-value red pigment and antioxidant used by pharmaceutical, cosmetics, and food industries. The astaxanthin produced chemically is costly and is not approved for human consumption due to the presence of by-products. The astaxanthin production by natural microalgae requires large open areas and specialized equipment, the process takes a long time, and results in low titers. Recombinant microbial cell factories can be engineered to produce astaxanthin by fermentation in standard equipment. In this work, an oleaginous yeast Yarrowia lipolytica was engineered to produce astaxanthin at high titers in submerged fermentation. First, a platform strain was created with an optimised pathway towards β-carotene. The platform strain produced 331 ± 66 mg/L of β-carotene in small-scale cultivation, with the cellular content of 2.25% of dry cell weight. Next, the genes encoding β-ketolase and β-hydroxylase of bacterial (Paracoccus sp. and Pantoea ananatis) and algal (Haematococcus pluvialis) origins were introduced into the platform strain in different copy numbers. The resulting strains were screened for astaxanthin production, and the best strain, containing algal β-ketolase and β-hydroxylase, resulted in astaxanthin titer of 44 ± 1 mg/L. The same strain was cultivated in controlled bioreactors, and a titer of 285 ± 19 mg/L of astaxanthin was obtained after seven days of fermentation on complex medium with glucose. Our study shows the potential of Y. lipolytica as the cell factory for astaxanthin production.


Author(s):  
Ketut Buda Artana ◽  
Dinariyana Dwi Putranta ◽  
Irfan Syarief Arief ◽  
I MadeAriana

Increase in demand for clean energy is one of the strategic issues in Indonesia nowadays, considering the significant economic growth of the country. A conventional LNG supply chain is not the best solution taking into consideration its high investment. The possibility of using a small scale LNG supply chain concept (Mini LNG) is recently sought by the government and private sectors in Indonesia. It is even more promising when we consider the amounts and number of stranded gas fields in the country. One of the main obstacles to the development plan is the geographical position of Indonesia as an archipelagic country. This paper presents a case study of LNG supply chain model of 10 mmscfd Gas Sales Agreement (GSA) in Batam and its design of LNG transportation model from Batam to Siantan-West Kalimantan [1]. The distance between Batam and Siantan is approximately 392 nautical miles. Two main objectives are covered in this paper. The first one is an implementation of the Analytical Hierarchy Process (AHP) to select the best location for mini LNG plant, and the second one is to design the LNG supply chain model based on optimization approach. The AHP model uses a pairwise comparison of 4 (four) qualitative attributes and 14 (fourteen) sub-attributes. 3 alternatives of location for mini LNG plant are evaluated, namely: Tanjung Uncang, Pemping Island and Janda Berhias Island. A sensitivity analysis by varying the weight of some critical attributes is also conducted to ensure that preferred location is sensitively selected with minimum error. The optimization of the LNG supply chain model is carried out by means of Gradually Reduced Gradient (GRG) methods. The Objective is to attain one design that will minimize investment (cost). Decision variables of the model are LNG plant capacity, storage tank capacity in loading and receiving terminal, vessel size, number of round trip, number of operating vessels, regasification capacity at the receiving terminal, and others.


Sign in / Sign up

Export Citation Format

Share Document