Can re-establishment of cattle grazing restore bryophyte diversity in abandoned mesic semi-natural grasslands?

2012 ◽  
Vol 21 (4) ◽  
pp. 981-992 ◽  
Author(s):  
Tuomo Takala ◽  
Teemu Tahvanainen ◽  
Jari Kouki
Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2905-2913
Author(s):  
Yawen Zhang ◽  
Zhibiao Nan ◽  
Xiaoping Xin

The effects of grazing by large herbivores on biodiversity and ecosystem functioning have been extensively studied, whereas how grazing influence plant diseases, especially in natural grasslands, remains poorly understood. Therefore, we undertook a field study regarding a grazing trial in a temperate meadow steppe grassland to investigate mechanisms underlying grazing-host-pathogen interactions. The effects of cattle grazing at different grazing intensities of 0, 0.23, 0.34, 0.46, 0.69, and 0.92 AU/ha (where 1 AU= 500 kg of adult cattle) on the microenvironment, vegetation characteristics, and occurrence of diseases were evaluated. At the population level, the effects of grazing on grassland vegetation characteristics and disease varied with grassland plant species. Compared with nongrazing, grazing directly decreased the average density, coverage, and disease incidence of palatable and edible forages by 51.4, 62.4, and 82.4% in the 0.92 AU/ha treatment but increased the occurrence and prevalence of disease in remaining small herbs by 752.1%. At the community level, with the increase of grazing intensity, the pathogen load of the whole community in grassland was positively related to host coverage. In addition, there was a trend toward increased microtemperature and decreased microhumidity with increased grazing. Although occurrence of plant diseases in natural grasslands is influenced by a range of factors, comprehensive analysis highlighted the major role that cattle grazing intensity plays in the occurrence of plant diseases in natural grasslands. In addition to its direct effect, grazing also indirectly affects disease occurrence by shifting plant community structure and the microenvironment. However, direct effects of grazing intensity affected disease occurrence more than indirect effects.


2004 ◽  
Vol 14 (6) ◽  
pp. 1656-1670 ◽  
Author(s):  
Juha Pöyry ◽  
Sami Lindgren ◽  
Jere Salminen ◽  
Mikko Kuussaari

2014 ◽  
Vol 3 (1) ◽  
pp. 36
Author(s):  
Eleanor R. L. Bassett ◽  
Lauchlan H Fraser

Grasslands are of vital importance to the ranching industry. Cattle grazing can alter the structure and composition of the plant community, and may indirectly affect insect communities. We investigated the effects of cattle grazing and site productivity on carabid beetle abundance, dried weight (biomass), species richness and diversity. We used pitfall traps to capture beetles in three sessions in 2008 in Lac Du Bois Provincial Park, British Columbia (B.C.), Canada. To test for main and interacting effects of elevation and grazing, carabid beetles were quantified by trap for abundance, dried weight (biomass), species richness and Shannon’s diversity. We found that elevation (a proxy of site productivity) was the most important predictor of carabid parameters, with lower elevation (low site productivity) having lower abundance, biomass, species richness and diversity compared to upper elevation (high site productivity). Although there was no main effect caused by grazing, there was a reduction in carabid biomass and diversity at grazed upper elevation sites compared to ungrazed upper elevation sites, suggesting that site productivity and plant structure affects carabid communities. Cattle management of natural grasslands benefits by considering biodiversity of all biota, including invertebrates. Carabid species diversity can be maximized by restricting grazing at high site productivity where plant biomass and litter is high.


2005 ◽  
Vol 122 (3) ◽  
pp. 465-478 ◽  
Author(s):  
Juha Pöyry ◽  
Sami Lindgren ◽  
Jere Salminen ◽  
Mikko Kuussaari

2021 ◽  
Vol 13 (6) ◽  
pp. 3569
Author(s):  
Hua Cheng ◽  
Baocheng Jin ◽  
Kai Luo ◽  
Jiuying Pei ◽  
Xueli Zhang ◽  
...  

Quantitatively estimating the grazing intensity (GI) effects on vegetation in semiarid hilly grassland of the Loess Plateau can help to develop safe utilization levels for natural grasslands, which is a necessity of maintaining livestock production and sustainable development of grasslands. Normalized difference vegetation index (NDVI), field vegetation data, and 181 days (one goat per day) of GPS tracking were combined to quantify the spatial pattern of GI, and its effects on the vegetation community structure. The spatial distribution of GI was uneven, with a mean value of 0.50 goats/ha, and 95% of the study area had less than 1.30 goats/ha. The areas with utilization rates of rangeland (July) lower than 45% and 20% made up about 95% and 60% of the study area, respectively. Grazing significantly reduced monthly aboveground biomass, but the grazing effects on plant growth rate were complex across the different plant growth stages. Grazing impaired plant growth in general, but the intermediate GI appeared to facilitate plant growth rate at the end of the growing seasons. Grazing had minimal relationship with vegetation community structure characteristics, though Importance Value of forbs increased with increasing GI. Flexibility in the number of goats and conservatively defining utilization rate, according to the inter-annual variation of utilization biomass, would be beneficial to achieve ecologically healthy and economically sustainable GI.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 20-20
Author(s):  
Sarah M Montgomery ◽  
Brandi Karisch ◽  
Jane A Parish ◽  
Jesse Morrison ◽  
Brian Baldwin

Abstract Annual ryegrass (Lolium multiflorum Lam.) can be divided into two cytotypes: diploid (2n = 2x) and tetraploid (2n = 4x). Polyploid versions of a given plant species result in increased seedling vigor, more robust growth and, potentially, greater yield. While most data suggest no difference in yield between diploid and tetraploid cultivars, there is still potential for weight gain advantages thanks to increased non-structural carbohydrates in tetraploid cells. The objectives of this study were to compare weight gain of cattle grazing either diploid or tetraploid cultivars of annual ryegrass. Two diploid annual ryegrass cultivars (Marshall and Tam 90) and two tetraploid cultivars (Jumbo and Nelson) were planted in 0.81-ha pastures, each replicated four times. Four steers (mean initial BW = 214 kg) were randomly assigned to each pasture for an 82-d grazing period. Body weights were recorded starting at d0 then every 28 days throughout the season. Data were analyzed in the GLM procedure of SAS using a significance level of α = 0.05. There were significant differences between cytotypes with respect to seasonal yield with diploids (9547.90 kg/ha) yielding greater than tetraploids (7762.00 kg/ha). As expected, ADF and NDF fractions were significantly less for tetraploids (ADF; 31.39%, NDF; 31.39%) compared to diploids (ADF; 33.75%, NDF; 53.25%). Tetraploids also contained significantly greater crude protein (13.50%) than diploids (12.90%). Cytotype had no effect on final average daily gain (ADG) (P = 0.9427). However, final ADG was significantly impacted by cultivar (P = 0.0134). Final ADG for Tam 90 (1.10 kg/d) was greater than Marshall (0.92 kg/d). Cattle grazing Nelson (1.04 kg/d) and Jumbo (0.99 kg/d) did not differ. Results show that regardless of differences in seasonal yield and nutritive value between cytotypes, there were no advantages in ADG for cattle grazing either cytotype.


Oryx ◽  
2021 ◽  
pp. 1-10
Author(s):  
Felipe Osuna ◽  
Roger Guevara ◽  
Enrique Martínez-Meyer ◽  
Raúl Alcalá ◽  
Alejandro Espinosa de los Monteros

Abstract Habitat specialists are particularly vulnerable to extinction when habitat conditions are altered. Information on the habitat use of such species is thus important because it provides insight into factors that influence distribution and abundance, which is crucial for conservation. Here, we aimed to identify factors that influence the patterns of presence and abundance of the Endangered volcano rabbit Romerolagus diazi, a rare leporid with a patchy distribution. Through exhaustive sampling of its range in the Sierra Chichinautzin and Sierra Nevada volcanic fields, Mexico, and using generalized linear models, we found that the probability of patch occupancy was higher where bunchgrass cover exceeded 75%, rock cover exceeded 5%, no cattle grazing was observed and human settlements were at least 7 km away. Patches with greater relative abundance were those with similar characteristics, but located at elevations > 3,600 m, and with rock cover < 15%. Cattle grazing was identified as a major threat to local populations of the volcano rabbit, particularly in the Sierra Chichinautzin. Because of the significance of bunchgrasses for this species, the protection of the mountain grasslands is required in both volcanic fields.


Sign in / Sign up

Export Citation Format

Share Document