Acclimation of denitrifying activated sludge to a single vs. complex external carbon source during a start-up of sequencing batch reactors treating ammonium-rich anaerobic sludge digester liquors

2014 ◽  
Vol 25 (6) ◽  
pp. 881-892 ◽  
Author(s):  
Krzysztof Czerwionka ◽  
Aneta Luczkiewicz ◽  
Joanna Majtacz ◽  
Przemyslaw Kowal ◽  
Katarzyna Jankowska ◽  
...  
1999 ◽  
Vol 39 (6) ◽  
pp. 61-68 ◽  
Author(s):  
Klangduen Pochana ◽  
Jürg Keller

Experiments have been performed to gain an understanding of the conditions and processes governing the occurrence of SND in activated sludge systems. Sequencing batch reactors (SBRs) have been operated under controlled conditions using the wastewater from the first anaerobic pond in an abattoir wastewater treatment plant. Under specific circumstances, up to 95% of total nitrogen removal through SND has been found in the system. Carbon source and oxygen concentrations were found to be important process parameters. The addition of acetate as an external carbon source resulted in a significant increase of SND activity in the system. Stepwise change of DO concentration has also been observed in this study. Experiments to determine the effect of the floc size on SND have been performed in order to test the hypothesis that SND is a physical phenomenon, governed by the diffusion of oxygen into the activated sludge flocs. Initial results support this hypothesis but further experimental confirmation is still required.


2001 ◽  
Vol 43 (3) ◽  
pp. 307-314 ◽  
Author(s):  
G. Yalmaz ◽  
I. Öztürk

The aim of the study was to investigate both the use of the SBR technology in biological ammonia removal from landfill leachate, and the suitability of raw landfill leachate as external carbon source in denitrification step. The SBR was fed with diluted leachate for the first 42 days and then the effluent of UASBR was used as the feed. The SBR was operated intermittently with a cycle time of 24 hours. The effluent NH4+-N values of less than 5 mg NH4+-N L-1 was consistently observed for the initial NH4+-N levels of as high as 1000 mg NH4+-N L-1. The nitrification rates for the first, second and third stages were found as 5.7, 46.8 and 102.8 mg NH4+-N L-1 h-1, respectively. The difference of the nitrification rates in the 2nd and 3rd stages originated from increasing adaptation of the sludge as well as increasing biomass concentration (10.5 mg NH4+-N g-1VSS h-1). No significant accumulation of NO2--N has been observed during the study and NO2--N/NOx--N ratios measured in the 1st aerobic phase and the SBR effluent were less than 7%. The denitrification rates for the second (raw leachate as carbon source) and the third (Ca(CH3COO)2 as carbon source) stages were determined as 45.7 mg NOx--N L-1 h-1 (or 9.85 mg NOx--N g-1VSS h-1) and 125.7 mg NOx--N L-1 h-1 (or 12.88 mg NOx--N g-1VSS h1), respectively.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 984
Author(s):  
Pedro Cisterna-Osorio ◽  
Claudia Calabran-Caceres ◽  
Giannina Tiznado-Bustamante ◽  
Nataly Bastias-Toro

This research studies the incidence of the type of substrate, soluble or particulate, in the emergence, development, and inhibition of bulking in activated sludge systems. It was evaluated using the sludge volume index (SVI), mixing liquor-suspended solids (MLSS), microscopic analysis of biomass, and effluent suspended solids (ESS). In the first experiment, four sequencing batch reactors (SBRs) were fed with soluble substrate at a fixed mass, while the mass of the particulate substrate varied, as those (saccharose mass/flour mass) ratios were 3:1, 3:2, 3:3 and 3:4., with a deficit ranging from 20 to 30% compared to the ratio recommended. The four SBRs have similar MLSS, IVL, and ESS. From day 30, with a deficit from 80 to 90%, the influents have ratios 1/1 and 1/2 until 48 days. The SBRs present IVL between 600 and 730 mL/g and ESS from 370 to 440 mg/L; unlike influents with ratios 1/3 and 1/4, they present IVL between 170 and 185 mL/g, and ESS from 260 to 270 mg/L. The favorable effect of particulate matter is categorical. In the second set of experiments, two SBRs were studied: SBR 1 fed with saccharose, and SBR 2 with flour; there is a lack of nutrients causing bulking in SBRs. Once the nutrient deficiency condition is changed in day 11 to excess, after 22 days, the SVI was 190 mL/g, ESS was 360 mg/L, and MLSS was 2000 mg/L for influents with saccharose; the influent with flour, with an SVI of 80 mL/g, ESS of 100 mg/L, and MLSS of 4000 mg/L, shows faster and more consistent recovery with the particulate substrate. Therefore, the proposal is to add particulate substrate-like flour to active sludge plants facing bulking. It is a clean, innocuous and sustainable alternative to processes that use chemical reagents.


1998 ◽  
Vol 38 (1) ◽  
pp. 255-264 ◽  
Author(s):  
Germán Cuevas-Rodríguez ◽  
Óscar González-Barceló ◽  
Simón González-Martínez

This research project was conducted to analyze the performance of a SBR reactor when being fed with anaerobically fermented wastewater. Important was to determine the capacity of the system to remove nitrogen and phosphorus. Two SBR reactors, each one with a volume of 980 liters, were used: one used as fermenter and the other as activated sludge SBR. Using 8-hour cycles, the reactors were operated and studied during 269 days. The fermenter produced an effluent with an average value of 223±24 mg/l of volatile fatty acids. The activated sludge SBR was tested under 3 organic loading rates of 0.13, 0.25, and 0.35 kgCODtotal/kgTSS·d. For the three tested organic loading rates, PO4-P concentrations under 1.1 mg/l and COD between 37 and 38 mg/l were consistently achieved. Exceptionally high NH4-N influent values were measured during the time of the experimentation with the organic load of 0.25 kgCODtotal/kgTSS·d, not reaching in this case full nitrification. Denitrification was observed during the fill phase in every cycle. SVI values between 40 and 70 were determined during the experimental runs.


2015 ◽  
Vol 71 (8) ◽  
pp. 1128-1135 ◽  
Author(s):  
Sevcan Aydın ◽  
Bahar Ince ◽  
Orhan Ince

In this study, we aimed to develop an understanding of the triple effects of sulfamethoxazole–erythromycin–tetracycline (ETS) and the dual effects of sulfamethoxazole–tetracycline (ST), erythromycin–sulfamethoxazole (ES) and erythromycin–tetracycline (ET) on the anaerobic treatment of pharmaceutical industry wastewater throughout a year of operation. Concentrations of the antibiotics in the influent were gradually increased until the metabolic collapse of the anaerobic sequencing batch reactors (SBRs), which corresponded to ETS (40 + 3 + 3 mg/L) and ST (25 + 2.5 mg/L), ET (4 + 4 mg/L) and ES (3 + 40 mg/L). Acetate accumulation in the anaerobic SBRs, acetoclastic activity of the anaerobic sludge taken from different antibiotic feeding stages and also expression of acetyl-coA synthetase from the acetoclastic methanogenic pathway on the mRNA level were assessed. The results indicated that, while acetate accumulation and decrease of acetoclastic activity were observed after stage 3 in the ST and ES reactors, and stage 7 in the ETS and ET reactors, the expression of acetyl-coA synthetase was mostly decreased in the last stages in all SBRs, in which antibiotic mixture feeding was terminated. It might be speculated that acetoclastic methanogens have an important role in acetate degradation by expressing acetyl-coA synthetase.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9325
Author(s):  
Katarzyna Jaromin-Gleń ◽  
Roman Babko ◽  
Tatiana Kuzmina ◽  
Yaroslav Danko ◽  
Grzegorz Łagód ◽  
...  

Reduction of the greenhouse effect is primarily associated with the reduction of greenhouse gas (GHG) emissions. Carbon dioxide (CO2) is one of the gases that increases the greenhouse effect - it is responsible for about half of the greenhouse effect. Significant sources of CO2 are wastewater treatment plants (WWTPs) and waste management, with about 3% contribution to global emissions. CO2 is produced mainly in the aerobic stage of wastewater purification and is a consequence of activated sludge activity. Although the roles of activated sludge components in the purification process have been studied quite well, their quantitative contribution to CO2 emissions is still unknown. The emission of CO2 caused by prokaryotes and eukaryotes over the course of a year (taking into account subsequent seasons) in model sequencing batch reactors (SBR) is presented in this study. In this work, for the first time, we aimed to quantify this contribution of eukaryotic organisms to total CO2 emissions during the WWTP process. It is of the order of several or more ppm. The contribution of CO2 produced by different components of activated sludge in WWTPs can improve estimation of the emissions of GHGs in this area of human activity.


2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Juliet Johnston ◽  
Sebastian Behrens

ABSTRACT Activated sludge is comprised of diverse microorganisms which remediate wastewater. Previous research has characterized activated sludge using 16S rRNA gene amplicon sequencing, which can help to address questions on the relative abundance of microorganisms. In this study, we used 16S rRNA transcript sequencing in order to characterize “active” populations (via protein synthesis potential) and gain a deeper understanding of microbial activity patterns within activated sludge. Seasonal abundances of individual populations in activated sludge change over time, yet a persistent group of core microorganisms remains throughout the year which are traditionally classified on presence or absence without monitoring of their activity or growth. The goal of this study was to further our understanding of how the activated sludge microbiome changes between seasons with respect to population abundance, activity, and growth. Triplicate sequencing batch reactors were sampled at 10-min intervals throughout reaction cycles during all four seasons. We quantified the gene and transcript copy numbers of 16S rRNA amplicons using real-time PCR and sequenced the products to reveal community abundance and activity changes. We identified 108 operational taxonomic units (OTUs) with stable abundance, activity, and growth throughout the year. Nonproliferating OTUs were commonly human health related, while OTUs that showed seasonal abundance changes have previously been identified as being associated with floc formation and bulking. We observed significant differences in 16S rRNA transcript copy numbers, particularly at lower temperatures in winter and spring. The study provides an analysis of the seasonal dynamics of microbial activity variations in activated sludge based on quantifying and sequencing 16S rRNA transcripts. IMPORTANCE Sequencing batch reactors are a common design for wastewater treatment plants, particularly in smaller municipalities, due to their low footprint and ease of operations. However, like for most treatment plants in temperate/continental climates, the microbial community involved in water treatment is highly seasonal and its biological processes can be sensitive to cold temperatures. The seasonality of these microbial communities has been explored primarily in conventional treatment plants and not in sequencing batch reactors. Furthermore, most studies often only address which organisms are present. However, the activated sludge microbial community is very diverse, and it is often hard to discern which organisms are active and which organisms are simply present. In this study, we applied additional sequencing techniques to also address the issues of which organisms are active and which organisms are growing. By addressing these issues, we gained new insights into seasonal microbial populations dynamics and activity patterns affecting wastewater treatment.


1999 ◽  
Vol 40 (1) ◽  
pp. 275-279 ◽  
Author(s):  
G. (Goktayoglu) Demirbas ◽  
C. F. Gokcay ◽  
F. B. Dilek

A model activated sludge (AS) plant was fed by pulping effluents from a straw and reed processing paper works. The model was initially operated to simulate a dedicated treatment plant by continuously receiving chlorinated effluents from the pulp bleachery. In this simulation cycle the model activated sludge was seeded only once during start-up and did not receive any domestic sewage after that. A carbon source was added in some of the experiments to bring up the organic content. In the second simulation cycle the pulping effluent was co-treated with municipal sewage. In this case the activated sludge unit was being continuously dosed by microorganisms and the organics present in the sewage. A higher organic chlorine (AOX) removal was obtained at shorter SRTs in the co-treatment AS. High AOX removal was achieved at longer SRTs in the dedicated, once-seeded AS. The AOX removal mechanism was mineralization in both cycles.


2012 ◽  
Vol 5 (3) ◽  
pp. 403-414 ◽  
Author(s):  
Thomas Schaubroeck ◽  
Samik Bagchi ◽  
Haydée De Clippeleir ◽  
Marta Carballa ◽  
Willy Verstraete ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document