Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary

2015 ◽  
Vol 123 (3) ◽  
pp. 329-347 ◽  
Author(s):  
Benjamin J. Wilson ◽  
Behzad Mortazavi ◽  
Ronald P. Kiene
2007 ◽  
Vol 11 (1) ◽  
pp. 328-339 ◽  
Author(s):  
J. Griffiths ◽  
J. Nutter ◽  
A. Binley ◽  
N. Crook ◽  
A. Young ◽  
...  

Abstract. This paper presents the results of a two-year field campaign to determine the spatial and temporal variability of groundwater interaction with surface waters in two Cretaceous Chalk catchments (the Pang and Lambourn) in the Upper Thames in Berkshire, UK, based on measurement of dissolved carbon dioxide (CO2). Average stream water concentrations of dissolved CO2 were up to 35 times the concentration at atmospheric equilibrium. Mean groundwater concentrations of 85 and 70 times the atmospheric equilibrium were determined from borehole water sampled in the Pang and Lambourn respectively. Diurnal and seasonal variation of in-stream concentration of dissolved CO2 is not significant enough to mask the signal from groundwater inputs.


2016 ◽  
Vol 38 ◽  
pp. 209
Author(s):  
Cláudio Alberto Teichrieb ◽  
Pablo Eli Soares de Oliveira ◽  
Tamires Zimmer ◽  
Cristiano Maboni ◽  
Daniel Michelon dos Santos ◽  
...  

In the last 15-20 years has greatly increased research on the problem of climate change, necessitating a demand for reliable measurements of absorption and emission of carbon dioxide, methane, as well as the impact on water resources. In the biome Pampa are the largest continuous natural field extensions, requiring a monitoring of water and temperature regime on the ground. The water content of the soil has spatial and temporal variability affecting many hydrological processes and determining this is needed since the soil store and provide the water and nutrients for the plants, thus involving relationships water-soil-plant-atmosphere. In this work, we compared the water content behavior of the soil at depths of 10, 30 and 50 cm, the temperature of the soil at depths of 5, 15 and 30 cm, heat flux in soil installed 10 cm deep and the thermal conductivity was determined in two experimental sites in the Pampa biome, for the period 01.01.2015 to 06.31.2015. It was found that there are differences between the sites in the capacity to retain moisture in the soil and in the ability to store energy in the soil for the study period.


2020 ◽  
Author(s):  
Carme Estruch ◽  
Roger Curcoll ◽  
Marta Borrós ◽  
Alba Àgueda ◽  
Josep-Anton Morguí

<p>Human activities implying land management are potential sources of greenhouse gases (GHGs) such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>). In addition, agricultural management practices enhances the presence of reactive gases in the atmosphere such as ammonia (NH<sub>3</sub>).  Knowing the atmospheric variability of gases in relation to the different stages of the rice culture cycle and other anthropic activities could help to improve GHGs' mitigation strategies in deltas.</p><p>A mobile survey was undertaken through 2019 in the Ebro Delta as a part of the ClimaDat Network project (DEC station, www.climadat.es), to study the effect of land management in the spatial and temporal variability of greenhouse gases and NH<sub>3</sub> concentrations. We are broadening the scope of a survey undertaken in 2012 (Àgueda et al. 2017). In the new survey we increased the total number of transects and longitude every three weeks during a year, starting in December 2018.</p><p>Whereas atmospheric NH<sub>3</sub> concentration links with diurnal and seasonal cycles, the distribution of CO<sub>2</sub> and CH<sub>4</sub> shows a combination of spatial and temporal variability.   Our aim is to understand how we can use wind trajectories to find the principal sources of atmospheric variability. That is, can wind direction improve our comprehension of metabolic processes occurring in paddy lands? In this work, we use wind trajectories as means of spatial classification, to explore the spatiotemporal dynamic affecting the potential of CO<sub>2</sub> and CH<sub>4</sub> atmospheric concentration. </p>


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
pp. 4
Author(s):  
Lisa Krimsky ◽  
Joseph Henry ◽  
Joshua Patterson

The absorption of atmospheric carbon dioxide by the oceans has changed the chemical properties of seawater and made it more acidic all over the world. Florida, with an extensive coastline and deep cultural and economic ties to marine resources, will be directly affected. This 4-page fact sheet written by Lisa Krimsky, Joseph Henry, and Joshua Patterson and published by the UF/IFAS Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation focuses on the spatial and temporal variability in oceanic pH and provide an overview of pH variability in Florida's coastal waters.https://edis.ifas.ufl.edu/fa227


2020 ◽  
Author(s):  
Joshua Hodge

<p>Coastal marshes along the northern Gulf of Mexico coastline provide very important ecosystem services such as serving as habitat for a variety of flora and fauna and providing flood protection for inland areas. A growing body of research has documented how hurricane storm surge sedimentation has increased the elevation of coastal marshes along the northern Gulf of Mexico coastline. This study investigates spatial variations in sediment distribution on McFaddin National Wildlife Refuge, Texas, USA, which is in the geographic region that was impacted by the right-front quadrant of Hurricane Ike. This research builds upon a prior study on hurricane storm surge sedimentation in which the sediment deposits from hurricanes’ Audrey, Carla, Rita, and Ike were identified on a marsh transect on McFaddin National Wildlife Refuge. The purpose of this study was to discover how hurricane storm surge sedimentation spatially varies in relation to the landfall location of Hurricane Ike. Fieldwork conducted in 2017-2018 involved digging shallow pits on four coastal marsh transects between Sabine Pass, Texas and High Island, Texas. Elevations were measured at each pit site along all four transects using a telescopic lens and stadia rod. The transects extend 880-1630 meters, with pit sites beginning near the coastline and extending landward. Results obtained in the field indicate that the Hurricane Ike sediment deposit has been found on all four transects, and that the deposit decreases in thickness moving landward along each transect. Furthermore, the observational results of this study were used in Regression Analyses to model hurricane storm surge sediment deposit thickness based on pit site distance inland, pit site elevation, and distance from the landfall of Hurricane Ike. Moreover, Analysis of Variance revealed whether distance inland, distance from landfall location, and the interaction between distance inland and distance from landfall location had any significant effect on storm surge deposit thickness. Actual sediment deposit thicknesses measured in the field were compared to the Regression and Analysis of Variance results. Results show that the Power Law Curve from the Regression Analyses was the most robust predictor of pit site sediment thickness based on distance inland, with an R<sup>2</sup> value of 0.538. Additionally, the Regression and Analysis of Variance results revealed that transect distance from the landfall location of Hurricane Ike was the only independent variable that could not predict or explain storm surge deposit thickness; which is very likely due to all four transects being in the right-front quadrant of landfalling Hurricane Ike. The findings of this study provide improved understanding of the spatial relationship between storm surge sedimentation and storm surge heights, valuable knowledge about the sedimentary response of coastal marshes subject to storm surge deposition, and useful guidance to public policy aimed at combating the effects of sea-level rise on coastal marshes along the northern Gulf of Mexico coastline.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document