Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro

BioMetals ◽  
2008 ◽  
Vol 22 (2) ◽  
pp. 275-281 ◽  
Author(s):  
Prasun Ray ◽  
Alok Adholeya
2001 ◽  
Vol 31 (4) ◽  
pp. 703-710 ◽  
Author(s):  
Jonathan R Cumming ◽  
Troy D Swiger ◽  
Betsy S Kurnik ◽  
Daniel G Panaccione

Ectomycorrhizal fungi exhibit varying degrees of aluminum (Al) tolerance and often confer Al tolerance to their host trees. The mechanisms of Al tolerance operating in ectomycorrhizae have yet to be elucidated. We exposed cultures of Laccaria bicolor (Maire) P.D. Orton and Pisolithus tinctorius Coker & Couch to Al in vitro and assessed organic acid production and the accumulation of Al and other nutrients in mycelia. Both L. bicolor and P. tinctorius were tolerant of Al in culture media at concentrations up to 500 µM. Aluminum did not significantly alter patterns of organic acid exudation in L. bicolor. Exposure to Al changed organic acid exudation profiles of P. tinctorius, altering patterns of tartrate, glycolate, and formate production and inducing oxalate production. Although growth was unaffected by Al in media, the concentrations of Ca, Mg, and Fe in mycelia were significantly reduced by exposure to Al in both species. The concentration of Al in mycelia increased with media Al concentration, with P. tinctorius accumulating four times more Al than L. bicolor. These results suggest that organic acid production may not be involved in Al tolerance in these ectomycorrhizal fungi, since patterns of exudation were not affected by Al in L. bicolor and the production of oxalate by P. tinctorius was ineffective at ameliorating Al-induced changes in ion accumulation by mycelia of this species.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 370-370
Author(s):  
Lauren L Kovanda ◽  
Monika Hejna ◽  
Yanhong Liu

Abstract The aim of this experiment was to examine the anti-inflammatory effects of butyric acid, sodium butyrate, monobutyrin and tributyrin using porcine alveolar macrophages (PAMs). PAMs were isolated from the bronchial lavage of 6 piglets at 6 weeks of age, and then seeded at 106 cells/mL in 24-well plates. After 24 h incubation, cells were treated with different treatments in a randomized complete block design with 10 replicates. The treatments were in a factorial arrangement with 2 doses of lipopolysaccharide (LPS, 0 or 1 μg/mL) and 5 levels of organic acid (0, 0.5, 1, 2, 4 mM for butyric acid and tributyrin and 0, 1, 2, 4, 8 mM for sodium butyrate and monobutyrin). Supernatants were collected after another 24 h incubation and analyzed for tumor necrosis factor alpha (TNF-α). Cell viability was also tested by the MTT assay. Data were analyzed using the MIXED procedure of SAS. No cytotoxic effect was observed in LPS challenge and each organic acid with the percentage of live cells was more than 76% in comparison to the sham control. Sodium butyrate at 2 and 4 mM dose exhibited (P < 0.01) a stimulatory effect on cell proliferation. LPS challenge remarkably stimulated (P < 0.0001) TNF-α secretion from PAMs. In the non-challenge group, butyric acid, monobutyrin, and tributyrin linearly reduced TNF-α production from PAMs, whereas 2 mM sodium butyrate tended to increase (P = 0.056) TNF-α secretion from PAMs. In the LPS challenge group, all tested organic acid dose-dependently reduced (P < 0.001) TNF-α production from LPS-challenged PAMs, with the strongest inhibiting effect observed at the highest dose. Results indicated that butyric acid and its derivatives that were tested in the current experiment all had strong anti-inflammatory activities in vitro.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 222
Author(s):  
Abdulaziz A. Al-Askar ◽  
WesamEldin I. A. Saber ◽  
Khalid M. Ghoneem ◽  
Elsayed E. Hafez ◽  
Amira A. Ibrahim

Presently, the bioprocessing of agricultural residues to various bioactive compounds is of great concern, with the potential to be used as plant growth promoters and as a reductive of various diseases. Lycopersiconesculentum, one of the most consumed crops in the human diet, is attacked by Fusarium wilt disease, so the main aim is to biocontrol the pathogen. Several fungal species were isolated from decayed maize stover (MS). Trichodermaasperellum was chosen based on its organic acid productivity and was molecularly identified (GenBank accession number is MW195019). Citric acid (CA) was the major detected organic acid by HPLC. In vitro, CA of T.asperellum at 75% completely repressed the growth of Fusariumoxysporum f. sp. lycopersici (FOL). In vivo, soaking tomato seeds in CA enhanced the seed germination and vigor index. T. asperellum and/or its CA suppressed the wilt disease caused by FOL compared to control. There was a proportional increment of plant growth and yield, as well as improvements in the biochemical parameters (chlorophyll pigments, total phenolic contents and peroxidase, and polyphenol oxidase activities), suggesting targeting both the bioconversion of MS into CA and biological control of FOL.


2000 ◽  
Vol 35 (9) ◽  
pp. 1905-1910 ◽  
Author(s):  
EDUARDO LUIZ VOIGT ◽  
VETÚRIA LOPES DE OLIVEIRA ◽  
ÁUREA MARIA RANDI

Compatibility between Eucalyptus dunnii and the ectomycorrhizal fungi Hysterangium gardneri and Pisolithus sp. - from Eucalyptus spp. -, Rhizopogon nigrescens and Suillus cothurnatus - from Pinus spp.-, was studied in vitro. Pisolithus sp., H. gardneri and S. cothurnatus colonized the roots. Pisolithus sp. mycorrhizas presented mantle and Hartig net, while H. gardneri and S. cothurnatus mycorrhizas presented only mantle. S. cothurnatus increased phenolics level on roots. Pisolithus sp. and R. nigrescens decreased the level of these substances. The isolates from Eucalyptus seem to be more compatible towards E. dunnii than those from Pinus. The mechanisms involved could be related, at least in the cases of Pisolithus and Suillus, to the concentration of phenolics in roots.


Sign in / Sign up

Export Citation Format

Share Document