Influence of leaf water potential on diurnal changes in CO2 and water vapour fluxes

2007 ◽  
Vol 124 (2) ◽  
pp. 161-181 ◽  
Author(s):  
Qiang Yu ◽  
Shouhua Xu ◽  
Jing Wang ◽  
Xuhui Lee
OENO One ◽  
2014 ◽  
Vol 48 (2) ◽  
pp. 123 ◽  
Author(s):  
José Manuel Mirás-Avalos ◽  
Emiliano Trigo-Córdoba ◽  
Yolanda Bouzas-Cid

<p style="text-align: justify;"><strong>Aims</strong>: To evaluate the usefulness of predawn water potential (<strong>Ψ</strong><sub>pd</sub>) to assess the water status of Galician grapevine cultivars for irrigation purposes.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Three Galician white grapevine cultivars (Albariño, Godello and Treixadura) were subjected to rain-fed and irrigation conditions during the 2013 growing season. Diurnal changes in leaf water potential (<strong>Ψ</strong><sub>l</sub>) were measured using a pressure chamber on days with high evapotranspiration demand. Stem water potential (<strong>Ψ</strong><sub>s</sub>) was measured at midday. <strong>Ψ</strong><sub>pd</sub> was not able to discriminate between treatments, whereas <strong>Ψ</strong><sub>l</sub> and <strong>Ψ</strong><sub>s</sub> at midday were able to detect significant differences in water status among plants.</p><p style="text-align: justify;"><strong>Conclusion</strong>: <strong>Ψ</strong><sub>pd</sub> was not useful to evaluate vine water status under the Galician climatic conditions. In contrast, both <strong>Ψ</strong><sub>l</sub> and <strong>Ψ</strong><sub>s</sub> were effective for detecting differences between treatments and can thus be used for irrigation management purposes.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This is the first study evaluating water status of Galician grapevine cultivars. It also provides useful information about the strategy for its control through measurements of midday <strong>Ψ</strong>l or <strong>Ψ</strong>s.</p>


1980 ◽  
Vol 7 (5) ◽  
pp. 527 ◽  
Author(s):  
NC Turner ◽  
MJ Long

In rapidly transpiring leaves, the water potentials of uncovered leaves measured in a pressure chamber were 0.2-0.7 MPa lower than the water potentials of leaves that were covered with a plastic sheath from just prior to their excision to the completion of the measurement. The error in the water potential of uncovered leaves arose from rapid water loss in the first 30 s after excision. The degree to which the water potentials were lowered depended on the rate of transpiration, the leaf water potential at the time of excision, the species, and whether the plants were grown in the glasshouse or field. It is suggested that the variation between species and between glasshouse-grown and field-grown plants arises from differences in water retention characteristics of plant tissue as well as to differences in the rates of transpiration at excision. The size of the error induced by the rapid water loss on diurnal changes in leaf water potential is demonstrated and the effect of the error in the calculation of turgor potentials and in the resistances to water flow through the plant is discussed.


1978 ◽  
Vol 20 (6) ◽  
pp. 472-474 ◽  
Author(s):  
S. K. Dutt ◽  
K. S. Gill

1986 ◽  
Vol 78 (4) ◽  
pp. 749-751 ◽  
Author(s):  
S. K. Hicks ◽  
R. J. Lascano ◽  
C. W. Wendt ◽  
A. B. Onken

Crop Science ◽  
1986 ◽  
Vol 26 (2) ◽  
pp. 380-383 ◽  
Author(s):  
R. C. Johnson ◽  
H. T. Nguyen ◽  
R. W. McNew ◽  
D. M. Ferris

2021 ◽  
Vol 255 ◽  
pp. 112274
Author(s):  
S. Junttila ◽  
T. Hölttä ◽  
E. Puttonen ◽  
M. Katoh ◽  
M. Vastaranta ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 311
Author(s):  
Vegas Riffle ◽  
Nathaniel Palmer ◽  
L. Federico Casassa ◽  
Jean Catherine Dodson Peterson

Unlike most crop industries, there is a strongly held belief within the wine industry that increased vine age correlates with quality. Considering this perception could be explained by vine physiological differences, the purpose of this study was to evaluate the effect of vine age on phenology and gas exchange parameters. An interplanted, dry farmed, Zinfandel vineyard block under consistent management practices in the Central Coast of California was evaluated over two consecutive growing seasons. Treatments included Young vines (5 to 12 years old), Control (representative proportion of young to old vines in the block), and Old vines (40 to 60 years old). Phenology, leaf water potential, and gas exchange parameters were tracked. Results indicated a difference in phenological progression after berry set between Young and Old vines. Young vines progressed more slowly during berry formation and more rapidly during berry ripening, resulting in Young vines being harvested before Old vines due to variation in the timing of sugar accumulation. No differences in leaf water potential were found. Young vines had higher mid-day stomatal conductance and tended to have higher mid-day photosynthetic rates. The results of this study suggest vine age is a factor in phenological timing and growing season length.


Sign in / Sign up

Export Citation Format

Share Document