scholarly journals Enhancement of doxorubicin cytotoxicity of human cancer cells by tyrosine kinase inhibition of insulin receptor and type I IGF receptor

2011 ◽  
Vol 133 (1) ◽  
pp. 117-126 ◽  
Author(s):  
Xianke Zeng ◽  
Hua Zhang ◽  
Annabell Oh ◽  
Yan Zhang ◽  
Douglas Yee
2009 ◽  
Vol 16 (2) ◽  
pp. 635-647 ◽  
Author(s):  
Gail E de Blaquière ◽  
Felicity E B May ◽  
Bruce R Westley

Insulin-like growth factors (IGFs) are thought to promote tumour progression and metastasis in part by stimulating cell migration. Insulin receptor substrate-1 (IRS-1) and IRS-2 are multisite docking proteins positioned immediately downstream from the type I IGF and insulin receptors. IRS-2 but not IRS-1 has been reported to be involved in the migratory response of breast cancer cells to IGFs. The purpose of this investigation was to determine if IRS-1 is involved in, and to assess the contributions of IRS-1 and IRS-2 to, the migratory response of breast cancer cells to IGFs. The expression of IRS-1 and IRS-2 varied considerably between ten breast cancer cell lines. Oestrogen increases expression of the type I IGF receptor, IRS-1 and IRS-2 in MCF-7 and ZR-75 cells. Oestrogens may control the sensitivity of breast cancer cells to IGFs by regulating the expression of components of the IGF signal transduction pathway. The migratory response to a range of IGF-1 concentrations was measured in MCF-7 and MDA-MB-231 breast cancer cells in which IRS-1 and IRS-2 levels were modulated using a doxycycline-inducible expression system. Induction of both IRS-1 and IRS-2 expression increased the sensitivity of the migratory response to IGF-1 but did not increase the magnitude of the response stimulated at higher concentrations of IGF-1. Knockdown of IRS-1, IRS-2 and the type I IGF receptor in MCF-7 and MDA-MB-2231 cells decreased sensitivity to IGF-1. We conclude that both IRS-1 and IRS-2 control the migratory response of breast cancer cells to IGF-1 and may, therefore, be key molecules in determining breast cancer spread.


2016 ◽  
Vol 23 (9) ◽  
pp. 747-758 ◽  
Author(s):  
Zara Zelenko ◽  
Emily Jane Gallagher ◽  
Irini Markella Antoniou ◽  
Deepali Sachdev ◽  
Anupma Nayak ◽  
...  

Type 2 diabetes (T2D) is associated with increased cancer risk and cancer-related mortality. Data herein show that we generated an immunodeficient hyperinsulinemic mouse by crossing theRag1−/−mice, which have no mature B or T lymphocytes, with the MKR mouse model of T2D to generate theRag1−/−(Rag/WT) andRag1−/−/MKR+/+(Rag/MKR) mice. The female Rag/MKR mice are insulin resistant and have significantly higher nonfasting plasma insulin levels compared with the Rag/WT controls. Therefore, we used these Rag/MKR mice to investigate the role of endogenous hyperinsulinemia on human cancer progression. In this study, we show that hyperinsulinemia in the Rag/MKR mice increases the expression of mesenchymal transcription factors,TWIST1andZEB1, and increases the expression of the angiogenesis marker, vascular endothelial growth factor A (VEGFA). We also show that silencing the insulin receptor (IR) in the human LCC6 cancer cells leads to decreased tumor growth and metastases, suppression of mesenchymal markers vimentin, SLUG, TWIST1 and ZEB1, suppression of angiogenesis markers,VEGFAandVEGFD, and re-expression of the epithelial marker, E-cadherin. The data in this paper demonstrate that IR knockdown in primary tumors partially reverses the growth-promoting effects of hyperinsulinemia as well as highlighting the importance of the insulin receptor signaling pathway in cancer progression, and more specifically in epithelial–mesenchymal transition.


2008 ◽  
Vol 114 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Hua Zhang ◽  
Deepali Sachdev ◽  
Chun Wang ◽  
Allison Hubel ◽  
Martine Gaillard-Kelly ◽  
...  

2012 ◽  
Vol 13 (14) ◽  
pp. 1417-1424 ◽  
Author(s):  
Christopher Fung ◽  
Xing Chen ◽  
Jennifer R. Grandis ◽  
Umamaheswar Duvvuri

1993 ◽  
Vol 29 (16) ◽  
pp. 2256-2264 ◽  
Author(s):  
Lynda R. Wiseman ◽  
Michael D. Johnson ◽  
Alan E. Wakeling ◽  
Anne E. Lykkesfeldt ◽  
Felicity E.B. May ◽  
...  

Author(s):  
Sumaiah S. Al-Asmari ◽  
Aleksandra Rajapakse ◽  
Tomalika R. Ullah ◽  
Geneviève Pépin ◽  
Laura V. Croft ◽  
...  

Activation of the STING pathway upon genotoxic treatment of cancer cells has been shown to lead to anti-tumoral effects, mediated through the acute production of interferon (IFN)-β. Conversely, the pathway also correlates with the expression of NF-κB-driven pro-tumorigenic genes, but these associations are only poorly defined in the context of genotoxic treatment, and are thought to correlate with a chronic engagement of the pathway. We demonstrate here that half of the STING-expressing cancer cells from the NCI60 panel rapidly increased expression of pro-tumorigenic IL-6 upon genotoxic DNA damage, often independent of type-I IFN responses. While preferentially dependent on canonical STING, we demonstrate that genotoxic DNA damage induced by camptothecin (CPT) also drove IL-6 production through non-canonical STING signaling in selected cancer cells. Consequently, pharmacological inhibition of canonical STING failed to broadly inhibit IL-6 production induced by CPT, although this could be achieved through downstream ERK1/2 inhibition. Finally, prolonged inhibition of canonical STING signaling was associated with increased colony formation of MG-63 cells, highlighting the duality of STING signaling in also restraining the growth of selected cancer cells. Collectively, our findings demonstrate that genotoxic-induced DNA damage frequently leads to the rapid production of pro-tumorigenic IL-6 in cancer cells, independent of an IFN signature, through canonical and non-canonical STING activation; this underlines the complexity of STING engagement in human cancer cells, with frequent acute pro-tumorigenic activities induced by DNA damage. We propose that inhibition of ERK1/2 may help curb such pro-tumorigenic responses to DNA-damage, while preserving the anti-proliferative effects of the STING-interferon axis.


2008 ◽  
Vol 7 (11) ◽  
pp. 3499-3508 ◽  
Author(s):  
Thomas Bachleitner-Hofmann ◽  
Mark Y. Sun ◽  
Chin-Tung Chen ◽  
Laura Tang ◽  
Lin Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document