scholarly journals EMT reversal in human cancer cells after IR knockdown in hyperinsulinemic mice

2016 ◽  
Vol 23 (9) ◽  
pp. 747-758 ◽  
Author(s):  
Zara Zelenko ◽  
Emily Jane Gallagher ◽  
Irini Markella Antoniou ◽  
Deepali Sachdev ◽  
Anupma Nayak ◽  
...  

Type 2 diabetes (T2D) is associated with increased cancer risk and cancer-related mortality. Data herein show that we generated an immunodeficient hyperinsulinemic mouse by crossing theRag1−/−mice, which have no mature B or T lymphocytes, with the MKR mouse model of T2D to generate theRag1−/−(Rag/WT) andRag1−/−/MKR+/+(Rag/MKR) mice. The female Rag/MKR mice are insulin resistant and have significantly higher nonfasting plasma insulin levels compared with the Rag/WT controls. Therefore, we used these Rag/MKR mice to investigate the role of endogenous hyperinsulinemia on human cancer progression. In this study, we show that hyperinsulinemia in the Rag/MKR mice increases the expression of mesenchymal transcription factors,TWIST1andZEB1, and increases the expression of the angiogenesis marker, vascular endothelial growth factor A (VEGFA). We also show that silencing the insulin receptor (IR) in the human LCC6 cancer cells leads to decreased tumor growth and metastases, suppression of mesenchymal markers vimentin, SLUG, TWIST1 and ZEB1, suppression of angiogenesis markers,VEGFAandVEGFD, and re-expression of the epithelial marker, E-cadherin. The data in this paper demonstrate that IR knockdown in primary tumors partially reverses the growth-promoting effects of hyperinsulinemia as well as highlighting the importance of the insulin receptor signaling pathway in cancer progression, and more specifically in epithelial–mesenchymal transition.

2011 ◽  
Author(s):  
Jessica Kandel ◽  
Dimitris Anastassiou ◽  
Viktoria Rumjantseva ◽  
Wei-yi Cheng ◽  
Jianzhong Huang ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Bong Jun Cho ◽  
Hans H. Kim ◽  
David J Lee ◽  
Eun Jung Choi ◽  
Yeo Hyun Hwang ◽  
...  

AbstractMicroRNA-21 (miR-21) plays important roles in carcinogenesis and is highly expressed in diverse human cancers. We evaluated the potential of targeting miRNA-21 to overcome the radioresistance of human cancer cells having an activated EGFR2-associated signaling and also aimed to elucidate the mechanisms of radiosensitization, and the effect on epithelial- mesenchymal transition (EMT). Ectopic overexpression of miR-21 up-regulated EGFR/HER2-associated signaling and increased radioresistance of a panel of human cancer cells (U251, U87, and A549 cells). In contrast, a specific inhibitor of miR-21 attenuated this signaling and radiosensitized a panel of human cancer cells. Inhibition of miR-21 was associated with persistent γH2AX foci formation. Inhibition of miR-21 decreased the typical features of EMT, such as invasion and migration and vascular tube formation. Treatment with anti-miR-21 decreased tumor burden in nude mice bearing intracranial U251 xenografts compared to controls. Combined treatment of anti-miR-21 and radiation further decreased tumor burden compared to each treatment alone. In summary, miR-21 is an important onco-miR, which confers radioresistance and diverse features of EMT. Inhibition of miR-21 could be a potential strategy for improving the efficacy of radiation therapy via unique modulation of pro-survival signaling implicated in radiation response and EMT.


BMC Cancer ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitris Anastassiou ◽  
Viktoria Rumjantseva ◽  
Weiyi Cheng ◽  
Jianzhong Huang ◽  
Peter D Canoll ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 89
Author(s):  
Ha Thi Thu Do ◽  
Jungsook Cho

Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 172
Author(s):  
Izabela Papiewska-Pająk ◽  
Patrycja Przygodzka ◽  
Damian Krzyżanowski ◽  
Kamila Soboska ◽  
Izabela Szulc-Kiełbik ◽  
...  

During metastasis, cancer cells undergo phenotype changes in the epithelial-mesenchymal transition (EMT) process. Extracellular vesicles (EVs) released by cancer cells are the mediators of intercellular communication and play a role in metastatic process. Knowledge of factors that influence the modifications of the pre-metastatic niche for the migrating carcinoma cells is important for prevention of metastasis. We focus here on how cancer progression is affected by EVs released from either epithelial-like HT29-cells or from cells that are in early EMT stage triggered by Snail transcription factor (HT29-Snail). We found that EVs released from HT29-Snail, as compared to HT29-pcDNA cells, have a different microRNA profile. We observed the presence of interstitial pneumonias in the lungs of mice injected with HT29-Snail cells and the percent of mice with lung inflammation was higher after injection of HT29-Snail-EVs. Incorporation of EVs released from HT29-pcDNA, but not released from HT29-Snail, leads to the increased secretion of IL-8 from macrophages. We conclude that Snail modifications of CRC cells towards more invasive phenotype also alter the microRNA cargo of released EVs. The content of cell-released EVs may serve as a biomarker that denotes the stage of CRC and EVs-specific microRNAs may be a target to prevent cancer progression.


2009 ◽  
Vol 20 (24) ◽  
pp. 5127-5137 ◽  
Author(s):  
Kai-Wen Hsu ◽  
Rong-Hong Hsieh ◽  
Chew-Wun Wu ◽  
Chin-Wen Chi ◽  
Yan-Hwa Wu Lee ◽  
...  

The c-Myc promoter binding protein 1 (MBP-1) is a transcriptional suppressor of c-myc expression and involved in control of tumorigenesis. Gastric cancer is one of the most frequent neoplasms and lethal malignancies worldwide. So far, the regulatory mechanism of its aggressiveness has not been clearly characterized. Here we studied roles of MBP-1 in gastric cancer progression. We found that cell proliferation was inhibited by MBP-1 overexpression in human stomach adenocarcinoma SC-M1 cells. Colony formation, migration, and invasion abilities of SC-M1 cells were suppressed by MBP-1 overexpression but promoted by MBP-1 knockdown. Furthermore, the xenografted tumor growth of SC-M1 cells was suppressed by MBP-1 overexpression. Metastasis in lungs of mice was inhibited by MBP-1 after tail vein injection with SC-M1 cells. MBP-1 also suppressed epithelial-mesenchymal transition in SC-M1 cells. Additionally, MBP-1 bound on cyclooxygenase 2 (COX-2) promoter and downregulated COX-2 expression. The MBP-1-suppressed tumor progression in SC-M1 cells were through inhibition of COX-2 expression. MBP-1 also exerted a suppressive effect on tumor progression of other gastric cancer cells such as AGS and NUGC-3 cells. Taken together, these results suggest that MBP-1–suppressed COX-2 expression plays an important role in the inhibition of growth and progression of gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document