scholarly journals Increased oxidative stress and cytotoxicity by hydrogen sulfide in HepG2 cells overexpressing cytochrome P450 2E1

2011 ◽  
Vol 27 (6) ◽  
pp. 439-453 ◽  
Author(s):  
Andres A. Caro ◽  
Sarah Thompson ◽  
Jonathan Tackett
2019 ◽  
Vol 17 ◽  
pp. 65-70 ◽  
Author(s):  
Yuqing Gong ◽  
P.S.S. Rao ◽  
Namita Sinha ◽  
Sabina Ranjit ◽  
Theodore J. Cory ◽  
...  

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 288
Author(s):  
Julie Massart ◽  
Karima Begriche ◽  
Jessica H. Hartman ◽  
Bernard Fromenty

Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani’s group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.


2002 ◽  
Vol 30 (4) ◽  
pp. 400-405 ◽  
Author(s):  
S Takahashi ◽  
T Takahashi ◽  
S Mizobuchi ◽  
M Matsumi ◽  
K Morita ◽  
...  

Cytotoxic free radicals generated during the metabolism of carbon tetrachloride by cytochrome P450 2E1 (CYP2E1) are thought to cause hepatotoxicity. Here, the cytotoxic effects of carbon tetrachloride in a liver cell line expressing CYP2E1 (HLE/2E1) are compared with those in the mother cell line (HLE). The effects of carbon tetrachloride on the gene expression of HSP70, a potential marker of oxidative stress, were also examined. The viability of HLE/2E1 cells after exposure to carbon tetrachloride was significantly decreased compared with that of HLE cells. Northern blot analysis revealed that the HSP70 mRNA level was significantly increased after carbon tetrachloride treatment in both cell lines, while the magnitude of its increase was much greater in HLE/2E1 cells than in HLE cells. These results suggest that the oxidative stress induced by CYP2E1 plays an important role in the increase in cytotoxicity of carbon tetrachloride in CYP2E1-overexpressing cells.


2013 ◽  
Vol 15 (6) ◽  
Author(s):  
Travis Leung ◽  
Ramkumar Rajendran ◽  
Subir Singh ◽  
Richa Garva ◽  
Marija Krstic-Demonacos ◽  
...  

2013 ◽  
Vol 4 (10) ◽  
pp. e850-e850 ◽  
Author(s):  
A Shah ◽  
S Kumar ◽  
S D Simon ◽  
D P Singh ◽  
A Kumar

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1314
Author(s):  
Seung-Cheol Lee ◽  
Seung-Cheol Jee ◽  
Min Kim ◽  
Soee Kim ◽  
Min Kyoung Shin ◽  
...  

Benzo[a]pyrene (B[a]P) is a potentially hepatotoxic group-1 carcinogen taken up by the body through ingestion of daily foods. B[a]P is widely known to cause DNA and protein damages, which are closely related to cell transformation. Accordingly, studies on natural bioactive compounds that attenuate such chemical-induced toxicities have significant impacts on public health. This study aimed to uncover the mechanism of curcumin, the major curcuminoid in turmeric (Curcuma longa), in modulating the lipid accumulation and oxidative stress mediated by B[a]P cytotoxicity in HepG2 cells. Curcumin treatment reduced the B[a]P-induced lipid accumulation and reactive oxygen spicies (ROS) upregulation and recovered the cell viability. Cytochrome P450 family 1 subfamily A polypeptide 1 (CYP1A1) and Cytochrome P450 subfamily B polypeptide 1 (CYP1B1) downregulation resulting from decreased aryl hydrocarbon receptor (AhR) translocation into nuclei attenuated the effects of B[a]P-induced lipid accumulation and repressed cell viability, respectively. Moreover, the curcumin-induced reduction in ROS generation decreased the nuclear translocation of Nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of phase-II detoxifying enzymes. These results indicate that curcumin suppresses B[a]P-induced lipid accumulation and ROS generation which can potentially induce nonalcoholic fatty liver disease (NAFLD) and can shed a light on the detoxifying effect of curcumin.


Sign in / Sign up

Export Citation Format

Share Document