scholarly journals Pipe rheology of microfibrillated cellulose suspensions

Cellulose ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 141-156 ◽  
Author(s):  
Tuomas Turpeinen ◽  
Ari Jäsberg ◽  
Sanna Haavisto ◽  
Johanna Liukkonen ◽  
Juha Salmela ◽  
...  

Abstract The shear rheology of two mechanically manufactured microfibrillated cellulose (MFC) suspensions was studied in a consistency range of 0.2–2.0% with a pipe rheometer combined with ultrasound velocity profiling. The MFC suspensions behaved at all consistencies as shear thinning power law fluids. Despite their significantly different particle size, the viscous behavior of the suspensions was quantitatively similar. For both suspensions, the dependence of yield stress and the consistency index on consistency was a power law with an exponent of 2.4, similar to some pulp suspensions. The dependence of flow index on consistency was also a power law, with an exponent of − 0.36. The slip flow was very strong for both MFCs and contributed up to 95% to the flow rate. When wall shear stress exceeded two times the yield stress, slip flow caused drag reduction with consistencies higher than 0.8%. When inspecting the slip velocities of both suspensions as a function of wall shear stress scaled with the yield stress, a good data collapse was obtained. The observed similarities in the shear rheology of both the MFC suspensions and the similar behavior of some pulp fiber suspensions suggests that the shear rheology of MFC suspensions might be more universal than has previously been realized.

2021 ◽  
Author(s):  
Amira Husni Talib ◽  
Ilyani Abdullah ◽  
Nik Nabilah Nik Mohd Naser

2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Anthony J. Gannon ◽  
Garth V. Hobson ◽  
Michael J. Shea ◽  
Christopher S. Clay ◽  
Knox T. Millsaps

This study forms part of a program to develop a micro-electro-mechanical systems (MEMS) scale turbomachinery based vacuum pump and investigates the roughing portion of such a system. Such a machine would have many radial stages with the exhaust stages operating near atmospheric conditions while the inlet stages operate at near vacuum conditions. In low vacuum such as those to the inlet of a roughing pump, the flow can still be treated as a continuum; however, the no-slip boundary condition is not accurate. The Knudsen number becomes a dominant nondimensional parameter in these machines due to their small size and low pressures. As the Knudsen number increases, slip-flow becomes present at the walls. The study begins with a basic overview on implementing the slip wall boundary condition in a commercial code by specifying the wall shear stress based on the mean-free-path of the gas molecules. This is validated against an available micro-Poiseuille classical solution at Knudsen numbers between 0.001 and 0.1 with reasonable agreement found. The method of specifying the wall shear stress is then applied to a generic MEMS scale roughing pump stage that consists of two stators and a rotor operating at a nominal absolute pressure of 500 Pa. The zero flow case was simulated in all cases as the pump down time for these machines is small due to the small volume being evacuated. Initial transient two-dimensional (2D) simulations are used to evaluate three boundary conditions, classical no-slip, specified-shear, and slip-flow. It is found that the stage pressure rise increased as the flow began to slip at the walls. In addition, it was found that at lower pressures the pure slip boundary condition resulted in very similar predictions to the specified-shear simulations. As the specified-shear simulations are computationally expensive it is reasonable to use slip-flow boundary conditions. This approach was used to perform three-dimensional (3D) simulations of the stage. Again the stage pressure increased when slip-flow was present compared with the classical no-slip boundaries. A characteristic of MEMS scale turbomachinery are the large relative tip gaps requiring 3D simulations. A tip gap sensitivity study was performed and it was found that when no-slip boundaries were present the pressure ratio increased significantly with decreasing tip gap. When slip-flow boundaries were present, this relationship was far weaker.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
S. Priyadharshini ◽  
R. Ponalagusamy

An analysis of blood flow through a tapered artery with stenosis and dilatation has been carried out where the blood is treated as incompressible Herschel-Bulkley fluid. A comparison between numerical values and analytical values of pressure gradient at the midpoint of stenotic region shows that the analytical expression for pressure gradient works well for the values of yield stress till 2.4. The wall shear stress and flow resistance increase significantly with axial distance and the increase is more in the case of converging tapered artery. A comparison study of velocity profiles, wall shear stress, and flow resistance for Newtonian, power law, Bingham-plastic, and Herschel-Bulkley fluids shows that the variation is greater for Herschel-Bulkley fluid than the other fluids. The obtained velocity profiles have been compared with the experimental data and it is observed that blood behaves like a Herschel-Bulkley fluid rather than power law, Bingham, and Newtonian fluids. It is observed that, in the case of a tapered stenosed tube, the streamline pattern follows a convex pattern when we move fromr/R=0tor/R=1and it follows a concave pattern when we move fromr/R=0tor/R=-1. Further, it is of opposite behaviour in the case of a tapered dilatation tube which forms new information that is, for the first time, added to the literature.


Author(s):  
Ravi Arora ◽  
Eric Daymo ◽  
Anna Lee Tonkovich ◽  
Laura Silva ◽  
Rick Stevenson ◽  
...  

Emulsion formation within microchannels enables smaller mean droplet sizes for new commercial applications such as personal care, medical, and food products among others. When operated at a high flow rate per channel, the resulting emulsion mixture creates a high wall shear stress along the walls of the narrow microchannel. This high fluid-wall shear stress of continuous phase material past a dispersed phase, introduced through a permeable wall, enables the formation of small emulsion droplets — one drop at a time. A challenge to the scale-up of this technology has been to understand the behavior of non-Newtonian fluids under high wall shear stress. A further complication has been the change in fluid properties with composition along the length of the microchannel as the emulsion is formed. Many of the predictive models for non-Newtonian emulsion fluids were derived at low shear rates and have shown excellent agreement between predictions and experiments. The power law relationship for non-Newtonian emulsions obtained at low shear rates breaks down under the high shear environment created by high throughputs in small microchannels. The small dimensions create higher velocity gradients at the wall, resulting in larger apparent viscosity. Extrapolation of the power law obtained in low shear environment may lead to under-predictions of pressure drop in microchannels. This work describes the results of a shear-thinning fluid that generates larger pressure drop in a high-wall shear stress microchannel environment than predicted from traditional correlations.


1997 ◽  
Vol 3 (5) ◽  
pp. 333-342 ◽  
Author(s):  
P.J. Halliday ◽  
A.C. Smith

Potato starch and potato granules are materials that are often used in extrusion processes. It is important to quantify their rheology for modelling and prediction of process performance. The compaction behaviour of potato starch was examined at water contents of 4-18% wwb (wet weight basis) for pressures between 1 and 85 MPa. The Heckel deformation stress decreased as the water content increased up to 12% but became inaccurate at 18%. This decrease agreed qualitatively with other observations of the decrease in stiffness of starchy materials over this water content range. Potato granules were examined at water contents of 25-45% wwb and aspects of their rheo logical behaviour characterized using different approaches. A first approximation used the shear viscosity-shear rate power law which produced a law exponent for the resulting pastes (0.1-0.2). The classical Benbow equation was used to estimate yield and wall shear stresses in capillary flow. The latter indicates the presence of slip which was examined more fully as a function of wall shear stress. The Mooney technique was used together with a variation of the method where the shear rate for each die was subtracted from that for a non-slip flow, which was approximated using rough dies. A critical wall shear stress for slip was found to be 0.05-0.1 MPa, making it consistent with published results for other materials.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yingying Hu ◽  
Francesco Romanò ◽  
James B. Grotberg

Abstract We study the effects of surface tension and yield stress on mucus plug rupture. A three-dimensional simplified configuration is employed to simulate mucus plug rupture in a collapsed lung airway of the tenth generation. The Herschel–Bulkley model is used to take into account the non-Newtonian viscoplastic fluid properties of mucus. Results show that the maximum wall shear stress greatly changes right prior to the rupture of the mucus plug. The surface tension influences mainly the late stage of the rupture process when the plug deforms greatly and the curvature of the mucus–air interface becomes significant. High surface tension increases the wall shear stress and the time needed to rupture since it produces a resistance to the rupture, as well as strong stress and velocity gradients across the mucus–air interface. The yield stress effects are pronounced mainly at the beginning. High yield stress makes the plug take a long time to yield and slows down the whole rupture process. When the effects induced by the surface tension and yield forces are comparable, dynamical quantities strongly depend on the ratio of the two forces. The pressure difference (the only driving in the study) contributes to wall shear stress much more than yield stress and surface tension per unit length. Wall shear stress is less sensitive to the variation in yield stress than that in surface tension. In general, wall shear stress can be effectively reduced by the smaller pressure difference and surface tension.


2020 ◽  
Vol 76 (1) ◽  
pp. 9-26
Author(s):  
Saeed Bahrami ◽  
Mahmood Norouzi

Cardiovascular disease is now under the influence of several factors that encourage researchers to investigate the flow of these vessels. Oscillation influences the blood circulation in the volume of red blood cells (RBC) strongly. Therefore, in this study, its effects have been considered on hemodynamic parameters in the elastic wall and coronary bifurcation. In this study, a 3D geometry of non-Newtonian and pulsatile blood circulation is considered in the left coronary artery bifurcation. The Casson model with various hematocrits is analyzed in elastic and rigid walls. The wall shear stress (WSS) cannot show the stenosis artery alone, therefore, the oscillatory shear index (OSI) is represented as a hemodynamic parameter of WSS individually of time. The results are determined using two-way fluid-structure interaction (FSI) coupling method using an arbitrary Lagrangian-Eulerian method. The most prominent difference in velocity happened in the bifurcation and at hematocrit 30 with yield stress 6.59E-04 Pa. The backflow and vortex flow in the LCx branch grown with increasing shear rates. The likelihood of plaque generation at the ending of the LM branch is observed in hematocrits 10 and 20, while the WSS magnitude is normal in the hematocrit 60 with the greatest yield stress in the bifurcation. The shear stress among the rigid and elastic models is the highest at the ending of the LM branch. The wall shear stress magnitude among the models decreased at most of 24.49% by dividing the flow. Time-independent results for models showed that there is the highest value of OSI at the bifurcation, which then quickly dropped.


Author(s):  
Khalid M Saqr

Cerebral aneurysm is a fatal neurovascular disorder. Computational fluid dynamics simulation of aneurysm haemodynamics is one of the most important research tools which provide increasing potential for clinical applications. However, computational fluid dynamics modelling of such delicate neurovascular disorder involves physical complexities that cannot be easily simplified. Recently, it was shown that the Newtonian simplification used to close the shear stress tensor of the Navier–Stokes equation is not sufficient to explore aneurysm haemodynamics. This article explores the differences between the latter simplification, non-Newtonian power-law model and a newly proposed quasi-mechanistic model. The modified Krieger model, which treats blood as a suspension of plasma and particles, was implemented in computational fluid dynamics context here for the first time and is made available to the readers in a C# code in the supplementary material of this article. Two middle-cerebral artery and two anterior-communicating artery aneurysms, all ruptured, were utilized here as case studies. It was shown that the modified Krieger model had higher sensitivity for wall shear stress calculations in comparison with the other two models. The modified Krieger model yielded lower wall shear stress values consistently in comparison with the other two models. Moreover, the modified Krieger model has generally predicted higher pressure in the aneurysm models. Based on published aneurysm rupture studies, it is believed that ruptured aneurysms are usually correlated with lower wall shear stress values than unruptured ones. Therefore, this work concludes that the modified Krieger model is a potential candidate for providing better clinical relevance to aneurysm computational fluid dynamics simulations.


Author(s):  
Khaled J. Hammad

Wall-bounded separating and reattaching flows are encountered in biological applications dealing with blood flows through arteries and prosthetic devices. Separated and reattached flow regions have been associated in the past with the most common arterial disease, atherosclerosis. Previous studies suggest that local wall shear stress (WSS) patterns affect the location and progression rate of atherosclerotic lesions. A parametric study is performed to investigate the influence of hemorheology on the wall shear stress distribution in a separated and reattached flow region. Recent hemorheological studies quantified and emphasized the yield stress and shear-thinning non-Newtonian characteristics of unadulterated human blood. Numerical solutions to the governing equations that account for yield stress and shear-thinning rheological effects are obtained. A low WSS region is observed around the flow reattachment point while a peak WSS always exists close to the vortex center. The yield shear-thinning hemorheological model always results in the highest observed peak WSS. The yield stress impact on WSS distribution is most pronounced in the case of severe restrictions to the flow.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Hoogendoorn ◽  
A M Kok ◽  
E M J Hartman ◽  
C Chiastra ◽  
L Casadonte ◽  
...  

Abstract Aim Wall shear stress (WSS) has been widely associated with plaque development and destabilization. However, the multidirectionality of WSS, induced by the pulsatile nature of blood flow in combination with the arterial geometry, is rarely taken into account. The purpose of this study was to investigate the influence and predictive value of five (multidirectional) WSS parameters for coronary plaque progression and composition. Methods Familial hypercholesterolemic pigs (n=10, castrated male, 3 years old) were put on a high-fat diet and underwent imaging (near infrared spectroscopy-intravascular ultrasound (NIRS-IVUS), optical coherence tomography (OCT) and CT) of the three main coronary arteries at baseline and 10/12 months follow-up. IVUS-based lumen contours were combined with the centerline of artery as extracted from CT to obtain a 3D reconstruction of the coronary artery. Local flow velocity measurements were combined with the 3D-geometry of the coronary arterial lumen to calculate five multidirectional WSS parameters including: time average wall shear stress (TAWSS), oscilatory shear index (OSI), relative residence time (RRT), trans wall shear stress (TransWSS), cross flow index (CFI). For the analysis, arteries were divided into 3mm/45° sectors (n=3627). Per vessel each segment was classified as low, mid or high for each WSS metric based on the average value in the sector. Changes in wall thickness (WT) and plaque composition were assessed with NIRS-IVUS and OCT, and histology and related to the local (multidirectional) WSS. Results Half of the pigs developed lumen intruding, complex, lipid-rich plaques. In these pigs, coronary segments exposed to low baseline levels of TAWSS exhibited a significantly larger plaque growth per month compared to regions with either mid or high TAWSS (p<0.05, see figure). Furthermore, plaque growth correlated positively with the multidirectional WSS metrics OSI, RRT and CFI, with high multidirectionality resulting in the largest plaque growth (see figure). The positive predictive values (PPV) of the WSS metrics for plaque presence (WT>0.5mm) at follow up were 50% (low TAWSS), 48% (high OSI), 49% (high RRT), 47% (high CFI) and 43% (high transWSS). The PPVs for the presence of a fibroatheroma observed with histology were 61% (low TAWSS), 58% (high OSI), 61% (high RRT), 59% (high CFI) and 49% (high transWSS). Plaque growth vs. multidirectional WSS Conclusions This study shows that both low and multidirectional WSS promote the development of large and complex coronary atherosclerotic plaques with vulnerable characteristics. The high predictive values for fibrous cap atheroma development demonstrate the potential of multidirectional WSS metrics as a predictive clinical marker for vulnerable disease. Acknowledgement/Funding ERC- starter grant (grant agreement 310457)


Sign in / Sign up

Export Citation Format

Share Document