scholarly journals Potentiometric back titration as a robust and simple method for specific surface area estimation of lignocellulosic fibers

Cellulose ◽  
2021 ◽  
Author(s):  
Ferran Serra-Parareda ◽  
Roberto Aguado ◽  
Quim Tarrés ◽  
Pere Mutjé ◽  
Marc Delgado-Aguilar

AbstractThe specific surface area (SSA) of cellulosic or lignocellulosic fibers is seldom reported in the recent literature on papermaking, despite its close relation with the degree of refining and other key pulp properties. Amidst outdated assays (Pulmac permeability test) and methods that, while accurate, are of doubtful usefulness for papermaking purposes (N2 adsorption–desorption), we suggest a methodology based on the cationic demand. A commonly used cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDADMAC), became adsorbed onto thermomechanical pulp samples. Then, a potentiometric back titration with an anionic polyelectrolyte measured the cationic demand, expressed as microequivalents of PDADMAC per gram of pulp. Multiplying this value by the surface area of a microequivalent of polymer, considering rod-like conformation in the case of minimum ionic strength, yielded the SSA of the lignocellulosic pulp. Our system assumes that the quaternary ammonium groups were anchored through electrostatic and ion–dipole interactions. Measuring the carboxyl content allowed for discriminating between both kinds of forces. Finally, the model could be validated by plotting the estimated SSA values against the Schopper-Riegler degree, attaining high correlation coefficients (R2 ~ 0.98). Owing to the high molecular weight of the polyelectrolyte of choice (107 kDa), and more particularly in the case of fine-free pulps, SSA values estimated from the cationic demand were consistently lower than those from dye (Congo red) sorption. Instead of being a drawback, the limited diffusion of PDADMAC through fibers can enable papermakers to attain a more helpful quantification of the available surfaces in operations with low residence times.

2010 ◽  
Vol 1256 ◽  
Author(s):  
Girija Shankar Chaubey ◽  
Yuan Yao ◽  
Julien Pierre Amelie Makongo Mangan ◽  
Pranati Sahoo ◽  
Pierre F. P. Poudeu ◽  
...  

AbstractA simple method is reported for the synthesis of monodispersed HfO2 nanoparticles by the ammonia catalyzed hydrolysis and condensation of hafnium (IV) tert-butoxide in the presence of surfactants at room temperature. Transmission electron microscopy shows faceted nanoparticles with an average diameter of 3-4 nm. As-synthesized nanoparticles are amorphous in nature and crystallize upon moderate heat treatment. The HfO2 nanoparticles have a narrow size distribution, large specific surface area and good thermal stability. Specific surface area was about 239 m2/g on as-prepared nanoparticle samples while those annealed at 500 °C have specific surface area of 221 m2/g indicating that there was no significant increase in particle size. This result was further confirmed by TEM images of nanoparticles annealed at 300 °C and 500 °C. X-ray diffraction studies of the crystallized nanoparticles revealed that HfO2 nanoparticles were monoclinic in structure. The synthetic procedure used in this work can be readily modified for large scale production of monodispersed HfO2 nanoparticles.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Bronisław Psiuk ◽  
Anna Gerle ◽  
Małgorzata Osadnik ◽  
Andrzej Śliwa

The fine-pored materials represent a wide range of applications and searches are being continued to develop methods of their manufacturing. In the article, based on measurements on fine-grained powders of Al2O3, TiO2, and SiO2, it has been demonstrated that gelcasting can be relatively simple method of obtaining of nanoporous materials with high values of both specific surface area and open porosity. The powders were dispersed in silica sol, and the gelling initiator was NH4Cl. The usefulness of experiment design theory for developing of fine-pored materials with high porosity and specific surface area was also shown.


2011 ◽  
Vol 239-242 ◽  
pp. 2274-2279 ◽  
Author(s):  
Ying Chun Wang ◽  
Wen Hai Huang ◽  
Ai Hua Yao ◽  
De Ping Wang

A simple method to prepare hollow hydroxyapatite (HAP) microspheres with mespores on the surfaces is performed using a precipitation method assisted with Li2O-CaO-B2O3(LCB) glass fabrication process. This research is concerned with the effect of sintering temperature on the microstructure evolution, phase purity, surface morphology, specific surface area, and porosity after sintering process. The microspheres were sintered in air atmosphere at temperatures ranging from 500 to 900 °C. The starting hollow HAP microspheres and the sintered specimens were characterized by scanning electron microscope, X-ray diffractometer, specific surface area analyzer, and Hg porosimetry, respectively. The as-prepared microspheres consisted of calcium deficient hydroxyapatite. The results showed that the as-prepared hollow HAP microspheres had the highest specific surface areas, and the biggest total pore volume. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2~40 nm. The specific surface area and total pore volume of hollow HAP microspheres decreased with increasing sintering temperature. Whereas the mean pore size increased with increasing sintering temperature. It showed that at 700°C, Ca-dHAP decomposes into a biphasic mixture of HAP and β-calcium phosphate(TCP).


2014 ◽  
Vol 530-531 ◽  
pp. 41-44
Author(s):  
Li Zhu Chen ◽  
Yong Tang Jia ◽  
Cheng Cheng Yan ◽  
Hui Yu ◽  
Feng Chun Dong

One-step process of poly(styrene-co-maleic acid)(PS-PMA) nanofibers/QCM combination system was proposed as a novel ammonia detection in this study. Nano-sized PS-PMA fibers were deposited on the QCM electrodes via electrospinning technique directly, which can retain the original high specific surface area of PS-PMA nanofibers, and simplify NH3detection process significantly. Experimental results showed that this new PS-PMA nanofibers/QCM sensor exhibited excellent ammonia sensing performances, such as rapid response and good reproducibility. Moreover, the carboxyl content on the surface of PS-PMA membranes was also determined as well as the specific surface area in order to study the structure-properties relationships.


RSC Advances ◽  
2021 ◽  
Vol 11 (52) ◽  
pp. 32955-32964
Author(s):  
Fangwai Wang ◽  
Ruixue Xue ◽  
Yujie Ma ◽  
Yizhao Ge ◽  
Zijun Wang ◽  
...  

In this paper, a simple method was used to rapidly prepare MOF-808 with a large specific surface area and high stability.


Sign in / Sign up

Export Citation Format

Share Document