scholarly journals Determinants of Electric Vehicle Diffusion in China

Author(s):  
Martin Kalthaus ◽  
Jiatang Sun

AbstractWe analyze the effect of four determinants of electric vehicle diffusion in China for a panel of 31 regions for the period 2010–2016. We analyze diffusion of four different electric vehicle types, namely battery electric cars and buses as well as plug-in hybrid electric cars and buses. System GMM panel estimation results show that total monetary subsidies have a positive effect only on the diffusion of battery electric cars. A closer look reveals that subsidies provided by regional governments are decisive for all types of vehicles but the subsidy provided by the central government and its degression over time dilute the overall effect of subsidies and is partly detrimental. Non-monetary ownership policies, such as license-plate lotteries, show a positive effect only for battery electric cars. Availability of public charging infrastructure increases diffusion of all vehicle types. Charging points are relevant for cars, while charging stations are especially decisive for the diffusion of electric buses. Using local environmental conditions as a novel determinant for the diffusion of electric vehicles reveals that the local air pollution influences the diffusion of buses, but not of cars.

2019 ◽  
Vol 10 (2) ◽  
pp. 42 ◽  
Author(s):  
Igna Vermeulen ◽  
Jurjen Rienk Helmus ◽  
Mike Lees ◽  
Robert van den Hoed

The Netherlands is a frontrunner in the field of public charging infrastructure, having one of the highest number of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012–2015), a large percentage of the EV fleet were plugin hybrid electric vehicles (PHEV) due to the subsidy scheme at that time. With an increasing number of full electric vehicles (FEVs) on the market and a current subsidy scheme for FEVs only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have an effect on the charging behavior of the complete fleet, and is reason to understand better how PHEVs and FEVs differ in charging behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV to FEV is simulated by extending an existing agent-based model. Results show important effects of this transition on charging infrastructure performance.


2020 ◽  
Vol 12 (14) ◽  
pp. 5571
Author(s):  
Anastasia Gorbunova ◽  
Ilya Anisimov ◽  
Elena Magaril

The energy industry is a leader of introduction and development of energy supply technologies from renewable energy sources. However, there are some disadvantages of these energy systems, namely, the low density and inconsistent nature of the energy input, which leads to an increase in the cost of the produced electric energy in comparison to the traditional energy complexes using hydrocarbon fuel resources. Therefore, the smart grid technology based on preliminary calculation parameters of the energy system develops in cities. This area should also be used to organize the charging infrastructure of electric vehicles, as the electrification of road transport is one of the global trends. As a result, a current task of the transport and energy field is the development of scientifically based approaches to the formation of the urban charging infrastructure for electric vehicles. The purpose of the article is to identify the features of the application flow formation for the charge of the electric vehicle battery. The results obtained provide a basis for building a simulation model for determining the required number of charging stations in the city, taking into account the criteria of minimizing operating costs for electric vehicle owners and energy companies.


Author(s):  
Iqbal H. Jebril Et.al

This paper aims to investigate the user’s satisfaction with electric cars about charging stations (home, outdoor, and workplace). The descriptive approach was used. 403 questionnaires was distributed to the study population, 349 questionnaires are Usable. The Data were analyzed using Amos. The study found that there is an impact on the satisfaction of electric vehicle users in Jordan. we recommends to reducing the time spent charging electric vehicles at external charging stations, and increasing the quality of the mechanisms used in charging electric cars.


2020 ◽  
Vol 48 (4) ◽  
pp. 369-376
Author(s):  
Bálint Csonka ◽  
Márton Havas ◽  
Csaba Csiszár ◽  
Dávid Földes

The increasing number of electric vehicles induces a new relationship between the electric vehicles, transportation network and electric network. The deployment of the charging infrastructure is a prerequisite of the widespread of electric vehicles. Furthermore, the charging process and energy management have a significant influence on the operation of both the transportation and electric networks. Therefore, we have elaborated novel operational methods that support the deployment of charging infrastructure for electric cars and buses operating in public bus service, and the energy management. Weighted sum-models were developed to assess candidate sites for public charging stations. The mathematical model of public bus services was elaborated that supports the optimization of static charging infrastructure at bus stops and terminals without schedule adjustments. The flexibility and predictability of charging sessions were identified as the main differences between charging infrastructure deployment for cars and buses. Furthermore, the flows of energy, information and value have been revealed among the components of charging with a focus on commercial locations, which is the basis of energy flow optimization on the smart grid.


Author(s):  
Azhar Ul-Haq ◽  
Marium Azhar

This chapter presents a detailed study of renewable energy integrated charging infrastructure for electric vehicles (EVs) and discusses its various aspects such as siting requirements, standards of charging stations, integration of renewable energy sources for powering up charging stations and interfacing devices between charging facilities and smart grid. A smart charging station for EVs is explained along with its essential components and different charging methodologies are explained. It has been recognized that the amalgamation of electric vehicles in the transportation sector will trigger power issues due to the mobility of vehicles beyond the stretch of home area network. In this regard an information and communication technology (ICT) based architecture may support EVs management with an aim to enhance the electric vehicle charging and energy storage capabilities with the relevant considerations. An ICT based solution is capable of monitoring the state of charge (SOC) of EV batteries, health and accessible amount of energy along with the mobility of EVs.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Oleksii Serhiiovych Yama ◽  
Yurii Serhiiovych Olishevskii

The electric vehicle (EV) market is actively developing by leading car manufacturers around the world. The main efforts of developers are aimed at creating an efficient energy storage device - a rechargeable battery, because its parameters largely characterize the EV: power reserve and acceleration, engine power and others. But for the comfortable existence of EV in urban conditions requires a certain infrastructure, which includes charging stations, containing all the necessary equipment to charge the battery. In the results use many different terms and definitions that often describe the same phenomenon. This paper substantiates the need for systematization and analysis of equipment for charging electric vehicles. The methods of charging electric cars are considered in the work, the information on the ways of charging EV is arranged, parallels between different standards are made. Chargers for electric vehicles can be classified as follows: AC charging and DC charging. Both methods of EV charging are regulated by different standards in different countries. The US and Japan use the SAE J1772 standard, it covers both types of charging methods mentioned above. Its European adaptation is IEC 61851. The standard describes the power level of charging stations and types of EV sockets. The charging mode describes the safety communication protocol between the electric vehicle and the charging station. To establish a serial connection between the electric vehicle and the EVSE, there is a function "PILOT", which refers to the protocol IEC 61851, provides the necessary functions related to the communication of EV and EVSE. The connection detection sequence is performed automatically when the EVSE power control cable is physically connected to the EV. Of the many variants of controlled AC chargers, according to the authors, the most promising is the option based on an open project. The advantages are open data on the applied circuit solutions and code, as well as low cost compared to industrial designs, the availability of a user-friendly interface, the ability to create your own mobile application and connect a payment system. The disadvantage of the IEC 61851 protocol is the limited exchange of EVSE data with EV. Because only data on initialization, process and charge stop is transmitted via the exchange channel. The charging station cannot estimate the type of electric car, its characteristics, capacity and battery condition, maximum charging speed, etc. Implementing the above could be useful for creating things like load balancing and the potential for a possible return of electricity to the grid.


2021 ◽  
Vol 63 (1) ◽  
pp. 34-37
Author(s):  
Katarzyna Kosakowska

Electric cars have appeared in Poland relatively recently. However, they quickly became an important part of the discussion as an ecological alternative to traditional combustion vehicles. In 2018, the law was introduced regulating the use of infrastructure used by electric vehicles, subsidies and benefits for drivers operating such vehicles. Dynamic development of the electric vehicle market in the world, only to some extent, has translated itself into their popularity in Poland. The article deals with issues related to the causes of such a state, evaluating the main elements determining the expansion and popularity of this segment. Its main objective is to present a methodology for evaluating the infrastructure conducive to the development of electromobility in Poland in terms of the number of electric vehicle charging stations.


2020 ◽  
pp. 158-194
Author(s):  
Azhar Ul-Haq ◽  
Marium Azhar

This chapter presents a detailed study of renewable energy integrated charging infrastructure for electric vehicles (EVs) and discusses its various aspects such as siting requirements, standards of charging stations, integration of renewable energy sources for powering up charging stations and interfacing devices between charging facilities and smart grid. A smart charging station for EVs is explained along with its essential components and different charging methodologies are explained. It has been recognized that the amalgamation of electric vehicles in the transportation sector will trigger power issues due to the mobility of vehicles beyond the stretch of home area network. In this regard an information and communication technology (ICT) based architecture may support EVs management with an aim to enhance the electric vehicle charging and energy storage capabilities with the relevant considerations. An ICT based solution is capable of monitoring the state of charge (SOC) of EV batteries, health and accessible amount of energy along with the mobility of EVs.


Author(s):  
Xiangyu Luo ◽  
Rui Qiu

Electric vehicles, a significant part of sustainable transport, are attracting increasing attention with the development of sustainable cities. However, as supporting facilities of electric vehicles, public charging stations are of great significance to the promotion of electric vehicles. This paper proposes an electric vehicle charging station location model to improve the resource utilization of electric vehicles for sustainable cities. In this model, reservation services, idle rates during off-peak periods, and waiting time during peak periods are considered. Finally, a case from Chengdu, China, is used to examine the effectiveness of the proposed model. Then, further analyses of reservation ratios and penetration rates are conducted. The results show that the introduction of a reservation service has a positive effect on reducing the total cost, which would provide further support for sustainable cities and have an even greater impact on healthier lives.


Sign in / Sign up

Export Citation Format

Share Document