scholarly journals Operational Methods for Charging of Electric Vehicles

2020 ◽  
Vol 48 (4) ◽  
pp. 369-376
Author(s):  
Bálint Csonka ◽  
Márton Havas ◽  
Csaba Csiszár ◽  
Dávid Földes

The increasing number of electric vehicles induces a new relationship between the electric vehicles, transportation network and electric network. The deployment of the charging infrastructure is a prerequisite of the widespread of electric vehicles. Furthermore, the charging process and energy management have a significant influence on the operation of both the transportation and electric networks. Therefore, we have elaborated novel operational methods that support the deployment of charging infrastructure for electric cars and buses operating in public bus service, and the energy management. Weighted sum-models were developed to assess candidate sites for public charging stations. The mathematical model of public bus services was elaborated that supports the optimization of static charging infrastructure at bus stops and terminals without schedule adjustments. The flexibility and predictability of charging sessions were identified as the main differences between charging infrastructure deployment for cars and buses. Furthermore, the flows of energy, information and value have been revealed among the components of charging with a focus on commercial locations, which is the basis of energy flow optimization on the smart grid.

Author(s):  
Martin Kalthaus ◽  
Jiatang Sun

AbstractWe analyze the effect of four determinants of electric vehicle diffusion in China for a panel of 31 regions for the period 2010–2016. We analyze diffusion of four different electric vehicle types, namely battery electric cars and buses as well as plug-in hybrid electric cars and buses. System GMM panel estimation results show that total monetary subsidies have a positive effect only on the diffusion of battery electric cars. A closer look reveals that subsidies provided by regional governments are decisive for all types of vehicles but the subsidy provided by the central government and its degression over time dilute the overall effect of subsidies and is partly detrimental. Non-monetary ownership policies, such as license-plate lotteries, show a positive effect only for battery electric cars. Availability of public charging infrastructure increases diffusion of all vehicle types. Charging points are relevant for cars, while charging stations are especially decisive for the diffusion of electric buses. Using local environmental conditions as a novel determinant for the diffusion of electric vehicles reveals that the local air pollution influences the diffusion of buses, but not of cars.


2021 ◽  
Vol 12 (2) ◽  
pp. 81
Author(s):  
Zac Hathaway ◽  
Hilary Polis ◽  
Jen Loomis ◽  
John Boroski ◽  
Aaron Milano ◽  
...  

Portland General Electric (PGE) is one of only a few electric utilities in the United States actively conducting evaluations of their pilots in support of transportation electrification (TE). This article offers insights into PGE’s efforts to provide EV-related outreach and education to its customers. The article also examines interest in and use of PGE’s public charging infrastructure, particularly among transportation network company (TNC) drivers. The authors conducted an analysis of utilization data from PGE’s public charging stations to examine usage and the effectiveness of a peak pricing surcharge during peak electricity demand periods. The research pulls from additional data sources including (1) online customer surveys, (2) ride-and-drive intercept surveys, (3) and an online focus group. Findings illuminate the utility’s experience after three years of implementation and provide concrete guidance for other utilities seeking to expand customer adoption of EVs, while also exploring how pricing mechanisms can be effective at managing increased system load associated with increased EV charging. Findings also highlight the barriers environmental justice communities face with EVs and provide insights into how utilities can address misconceptions and increase awareness of the benefits of EVs for these groups.


2019 ◽  
Vol 10 (2) ◽  
pp. 42 ◽  
Author(s):  
Igna Vermeulen ◽  
Jurjen Rienk Helmus ◽  
Mike Lees ◽  
Robert van den Hoed

The Netherlands is a frontrunner in the field of public charging infrastructure, having one of the highest number of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012–2015), a large percentage of the EV fleet were plugin hybrid electric vehicles (PHEV) due to the subsidy scheme at that time. With an increasing number of full electric vehicles (FEVs) on the market and a current subsidy scheme for FEVs only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have an effect on the charging behavior of the complete fleet, and is reason to understand better how PHEVs and FEVs differ in charging behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV to FEV is simulated by extending an existing agent-based model. Results show important effects of this transition on charging infrastructure performance.


2020 ◽  
Vol 12 (14) ◽  
pp. 5571
Author(s):  
Anastasia Gorbunova ◽  
Ilya Anisimov ◽  
Elena Magaril

The energy industry is a leader of introduction and development of energy supply technologies from renewable energy sources. However, there are some disadvantages of these energy systems, namely, the low density and inconsistent nature of the energy input, which leads to an increase in the cost of the produced electric energy in comparison to the traditional energy complexes using hydrocarbon fuel resources. Therefore, the smart grid technology based on preliminary calculation parameters of the energy system develops in cities. This area should also be used to organize the charging infrastructure of electric vehicles, as the electrification of road transport is one of the global trends. As a result, a current task of the transport and energy field is the development of scientifically based approaches to the formation of the urban charging infrastructure for electric vehicles. The purpose of the article is to identify the features of the application flow formation for the charge of the electric vehicle battery. The results obtained provide a basis for building a simulation model for determining the required number of charging stations in the city, taking into account the criteria of minimizing operating costs for electric vehicle owners and energy companies.


2019 ◽  
Vol 11 (6) ◽  
pp. 1549 ◽  
Author(s):  
Lin Ma ◽  
Yuefan Zhai ◽  
Tian Wu

The rapid development of electric vehicles (EVs) is conducive to clean transportation, which is an important aspect of sustainable infrastructure. However, the introduction of EVs is constrained by the lagging development of EV chargers. To optimally promote the development of charging stations, we analyzed the differences in the optimal quality and quantity of EV chargers between company-owned and franchised enterprises by constructing a theoretical model, and the changes in the quality and quantity of EV chargers in different market environments are discussed. We found that the total number of franchised charging stations was larger in general, but that the quality of the franchised charging stations was worse compared with the company-owned stations. The supervision cost, operation cost, and the investment return affect the quality and quantity of EV chargers. Although franchised structures are more conducive in the initial stage to increasing the number of charging stations to meet the needs of EVs, company-owned structures perform better and will be needed to improve the quality of the EV chargers as the market becomes more saturated, necessitating a higher quality of EV chargers.


Author(s):  
Jone Orbea ◽  
Sebastian Castellanos ◽  
Cristina Albuquerque ◽  
Ryan Sclar ◽  
Berta Pinheiro

Bus services are a fundamental component of transportation networks in Latin America, but buses often account for a disproportionately large number of environmental externalities. Electric buses (e-buses) are emerging as an effective and pragmatic option for reducing greenhouse gas emissions and local pollutants. However, e-buses are difficult to procure in Latin America because of existing procurement challenges in the region, especially as those challenges relate to forming contracts to deal with high upfront costs and unknown risks. To overcome these procurement issues, this paper presents a new contractual model, based on literature and case study research. This new model suggests the separation of bus service responsibilities into three separate actors: multiple bus procurement companies, one or multiple bus depots and charging infrastructure companies, and multiple bus operating companies. By separating bus service responsibilities, the proposed model would bring about three concrete improvements: lower costs to the transit system, better quality of service, and lower-emission fleet deployment.


2018 ◽  
Vol 9 (1) ◽  
pp. 14 ◽  
Author(s):  
Julia Krause ◽  
Stefan Ladwig ◽  
Lotte Saupp ◽  
Denis Horn ◽  
Alexander Schmidt ◽  
...  

Fast-charging infrastructure with charging time of 20–30 min can help minimizing current perceived limitations of electric vehicles, especially considering the unbalanced and incomprehensive distribution of charging options combined with a long perceived charging time. Positioned on optimal location from user and business perspective, the technology is assumed to help increasing the usage of an electric vehicle (EV). Considering the user perspectives, current and potential EV users were interviewed in two different surveys about optimal fast-charging locations depending on travel purposes and relevant location criteria. The obtained results show that customers prefer to rather charge at origins and destinations than during the trip. For longer distances, charging locations on axes with attractive points of interest are also considered as optimal. From the business model point of view, fast-charging stations at destinations are controversial. The expensive infrastructure and the therefore needed large number of charging sessions are in conflict with the comparatively time consuming stay.


2019 ◽  
Vol 23 (2) ◽  
pp. 9-21
Author(s):  
Aivars Rubenis ◽  
Aigars Laizans ◽  
Andra Zvirbule

Abstract This article presents preliminary analysis of the Latvian national EV fast - charging network after the first year of operation. The first phase of Latvian national EV fast-charging network was launched in 2018 with 70 charging stations on the TEN-T roads and in the largest towns and cities. The article looks at the initial results, both looking at the total capacity utilization for individual charging stations, determining the hourly charging distribution; and to the utilization of the network as a whole. The results present that there is a very large dispersion of the data, most of the charging events happening in a few charging stations in and around the capital of Latvia. However, there have been charging events in all charging stations, even in the most remote ones. Even more skewed distribution was observed analyzing the charging habits of the EV users, with 10 % of users accounting for more than half of the charging events. This should be taken into account when considering applying the results for the future, expecting larger number of electric vehicles in Latvia.


2018 ◽  
Vol 81 (2) ◽  
pp. 13-21
Author(s):  
I. A. Honchar ◽  
Z. O. Palyan

UN Sustainable Development Goals contain an ecological component: stabilizing atmospheric concentrations of greenhouse gases and finding alternative sources of energy. The introduction of electric cars will help solve both problems simultaneously. The analysis of the current world trends in the cars market shows the steady growth of consumer preferences for electric cars and the rapid reaction of the world’s automakers. According to forecasts provided by Bloomberg New Energy Finance, it is expected that in 2040, more than half (54%) of world car sales will come from electric vehicles. The spread of this type of ecological vehicles associated with the decision on technical, organizational and legal nature create an infrastructure of electric charging stations. The article proposed analyzes the dynamics of prevalence of electric vehicles and development of services of electric charging stations in Ukraine. In the car market electric cars Ukraine appeared recently, since 2012 (the first 10 units), but during the next 5 years, the number of registered annually increased by 37.5 times and as of 01.01.2018 already numbered 5688 cars. The rapid increase in the number of registered electric vehicles started from 2016, when the import duty on electric cars was canceled at the legislative level. The number of registered electric cars in Ukraine increased by 11 times in 2016–2017. During these two years the share of electric cars in total sales doubled and reached 4.6% in 2017. Today the coverage of the territory of Ukraine by electric charging stations is about 20%. However, the rate of expansion of the number of electric charging stations even for one 2017 year are impressive, namely, the fourfold increase. Expansion of the Ukrainian market of electric cars is constrained by the unregulated status of electric charging stations, as well as services related to servicing and operation of electric vehicles. First of all, the issue of classification of the activity of providing services for charging the battery of electric cars should be solved. It is possible to resolve the issue, if one distinguishes a separate activity in one of the Classification of Economic Activities (CEA) sections. The current version of the Classification of Economic Activities contains an activity related exclusively to vehicle maintenance (section G, division 45, group 2), which does not include service for charging a car battery. The solution of the issue is the introduction of a new type of activity: “Services for charging batteries”. As a result it will allow creating favorable conditions for the development of the market for servicing and operation of electric vehicles.


Author(s):  
Iqbal H. Jebril Et.al

This paper aims to investigate the user’s satisfaction with electric cars about charging stations (home, outdoor, and workplace). The descriptive approach was used. 403 questionnaires was distributed to the study population, 349 questionnaires are Usable. The Data were analyzed using Amos. The study found that there is an impact on the satisfaction of electric vehicle users in Jordan. we recommends to reducing the time spent charging electric vehicles at external charging stations, and increasing the quality of the mechanisms used in charging electric cars.


Sign in / Sign up

Export Citation Format

Share Document